

CanSat 2023 Post Flight Review (PFR) Outline

#1085 Bamantara EEPISAT

Section	Presenter	Pages
Introduction	Fatwa Aulia Al-Haq	<u>1 - 3</u>
Systems Overview	Artaka Sunu Adhi Prasetya	<u>4 - 8</u>
Concept of Operations and Sequence of Events	Fatwa Aulia Al-Haq	<u>9 - 12</u>
Flight Data Analysis	Achmad Bagus Okto Faerizqi	<u>13 - 23</u>
Failure Analysis	Muhammad Tsaqif Mukhayyar	<u>24 - 25</u>
Lessons Learned	Fatwa Aulia Al-Haq	<u>26 - 28</u>

System Overview

Artaka Sunu Adhi Prasetya

Payload Major Components

Information

Payload will work after released from the container. DC motor and leadscrew mechanism are used to maintain the heat shield angle. The mass is focused at the bottom of the payload to keep stability and prevent from swaying.

Payload Design Description (2/2)

Presenter: Artaka Sunu Adhi Prasetya

CanSat 2023 PFR: Team 1085 Bamantara EEPISAT

Container Major Components

Information

The descent control of the container is maintained by a parachute. The parachute has a spill hole and three side holes to improve stability and maintain nadir direction.

Container Design Description (2/2)

On/Off Switch

Bonus Camera

Attachment Point

Container Major Parts and Components

Container's Battery

3D Printed Holder

Velcro Locking System

Concept of Operations and Sequence of Events

Fatwa Aulia Al-Haq

Comparison of Planned and Actual CONOPS

CONOPS	Planned	Actual			
Pre-Launch	 Arrive at the launch site GCS and antenna setup Sensor system calibration and communication with the GCS command Final CanSat check completed Activate and load CanSat into a rocket 	 Arrive at the launch site √ GCS and antenna setup √ Sensor system calibration and communication with the GCS command √ Final CanSat check completed √ Activate and load CanSat into a rocket √ 			
Launch	 CanSat in a rocket launch CanSat is released from the rocket (670–725 m) Container parachute deployment with a rate of 15 m/s The video camera started to record the separation of the payload then the payload open a heat shield at 500 m with a rate of 20 m/s or less Payload parachute deployment at 200 m with a rate of 5 m/s Payload landed in the upright position and raised a flag 500 mm above the base of the payload. Therefore video camera stopped recording Payload shall stop transmitting data to GCS 	 CanSat in a rocket launch √ CanSat is released from the rocket (670–725 m) √ Container parachute deployment with an average rate of 19.6 m/s (in tolerance) √ The video camera started to record the separation of the payload then the payload open a heat shield at 500 m with an average rate of 17.5 m/s (less than 20 m/s) √ Payload parachute deployment at 200 m with an average rate of 9.1 m/s (out of tolerance) Payload raised flag then video camera stopped recording, but didn't in upright position Payload shall stop transmitting data to GCS √ 			
Post- Launch	 CanSat recovery by location from last telemetry and buzzer Inspection of CanSat damage Take the SD Card from the payload Analyze data received PFR preparation 	 CanSat recovery by location from last telemetry and buzzer Inspection of CanSat damage Take the SD Card from the payload Analyze data received PFR preparation 			

Comparison of Planned and Actual SOE (1/2)

CONOPS	Planned	Actual
Arrival	 Team arrival at the launch site GCS and antenna setup Check for any damages that may occur during travel 	 Team arrival at the launch site √ GCS and antenna setup √ Check for any damages that may occur during travel √
Pre-Launch	 Communication inspection Mechanism inspection Assembly of the container and payload Check the CanSat dimension and weight 	 Communication inspection √ Mechanism inspection √ Assembly of the container and payload √ Check the CanSat dimension and weight √
Rocket Integration	 Final CanSat inspection completed before launch Turn on the CanSat, integrate it into the rocket, and ensure communication with GCS 	 Final CanSat inspection completed before launch ✓ Turn on the CanSat, integrate it into the rocket, and ensure communication with GCS ✓

Comparison of Planned and Actual SOE (2/2)

CONOPS	Planned	Actual
Mission	 CanSat in a rocket launch Flight monitoring Display GCS to the judges and collect telemetry data during the mission Recovery crew preparation 	 CanSat in a rocket launch √ Flight monitoring √ Display GCS to the judges and collect telemetry data during the mission √ Recovery crew preparation √
Recovery	 CanSat recovery by location from last telemetry and buzzer Inspection of CanSat damage Retrieve data from SD Card in the payload 	 CanSat recovery by location from last telemetry and buzzer √ Inspection of CanSat damage √ Retrieve data from SD Card in the payload √
Post- Launch	 GCS data analysis and acquisition Deliver SD card and telemetry data to judges for scoring Evaluation team for launch day PFR preparation 	 GCS data analysis and acquisition √ Deliver SD card and telemetry data to judges for scoring √ Evaluation team for launch day √ PFR preparation √

Flight Data Analysis

Achmad Bagus Okto Faerizqi

1085,13:15:09,904,F,DESCENT,536.4,N,N,N,37.2,89.9,8.0,17:06:59,683.0,37.1952,-80.5760,4,-4.28,98.82,CXON 1085,13:15:10,905,F,DESCENT,516.1,N,N,N,36.8,90.1,8.0,17:07:00,688.0,37.1953,-80.5760,4,-20.60,112.41,CXON 1085,13:15:11,906,F,HS_DEPLOYED,499.9,P,N,N,36.4,90.3,8.0,17:07:01,700.3,37.1954,-80.5760,5,-77.54,-148.69,CXON 1085,13:15:12,907,F,HS_DEPLOYED,482.6,P,N,N,35.8,90.5,8.0,17:07:02,711.4,37.1955,-80.5760,5,-19.31,-159.44,CXON 1085,13:15:13,908,F,HS_DEPLOYED,465.6,P,N,N,35.4,90.7,8.0,17:07:03,4.3,37.1956,-80.5761,5,-15.27,-144.10,CXON

1085,13:15:27,922,F,HS_DEPLOYED,215.2,P,N,N,31.2,93.5,8.1,17:07:17,643.7,37.1963,-80.5758,5,-4.47,11.47,CXON 1085,13:15:28,923,F,HS_DEPLOYED,201.1,P,N,N,31.0,93.6,8.0,17:07:18,6.4,37.1963,-80.5757,5,49.25,48.70,CXON 1085,13:15:29,924,F,PC_DEPLOYED,187.1,P,C,N,30.8,93.8,8.0,17:07:19,625.6,37.1964,-80.5756,5,-3.85,-56.78,CXON 1085,13:15:30,925,F,PC_DEPLOYED,1/1.1,P,C,N,30.6,94.0,8.0,17:07:20,615.0,37.1964,-80.5756,5,-15.88,-8.88,CXON 1085,13:15:31,926,F,PC_DEPLOYED,156.5,P,C,N,30.6,94.1,8.0,17:07:21,7.1,37.1965,-80.5755,5,-7.90,-2.58,CXON

Information

The battery voltage had dropped when the heatshield was opening.

Payload Camera Video

Property	Value .		
Description			
Title			
Subtitle			
Rating	$\diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit \diamondsuit$		
Tags	1		
Comments	Create videos with https://clipc		
Video ———			
Length	00:00:32		
Frame width	1280		
Frame height	720		
Data rate	9715kbps		
Total bitrate	9904kbps		
rame rate 30.00 frames/second			
Audio			
Bit rate	189kbps		
Channels	2 (stereo)		
Audio sample rate	44.100 kHz		

Video properties

Information

The camera stopped recording shortly after LANDED state achieved. That state achieved while it is still descending because the elevation of landing area is lower than the launch pad. We didn't set the camera date and time.

Bonus Container Camera Video

neral Security De	tails Previous Versions	
Property	Value	
Description		L
Title		L
Subtitle		L
Rating	***	L
Tags		L
Comments	Create videos with https://clipc	
Video		
Length	00:00:29	
Frame width	1280	
Frame height	720	
Data rate	9635kbps	
Total bitrate	9824kbps	
Frame rate	30.00 frames/second	
Audio		
Bit rate	189kbps	
Channels	2 (stereo)	
Audio sample rate	44.100 kHz	
lemove Properties an	d Personal Information	

Video properties

Video link: Click here

Information

Video shown in this slide is cutted to payload release moment only. The camera started recording before the CanSat turn in the rocket and stopped after the CanSat was recovered. The payload release wasn't seen because the release moment is very fast. We didn't set the camera date and time.

Failure Analysis

Muhammad Tsaqif Mukhayyar

Identification of Failures, Root Causes and Corrective Actions

Failures		Causes		Corrective Actions
Payload is unable to upright after landing	 Paylo touch 	bad hit the crop before ndown	•	Change uprighting algorithm in Flight Software
Average of payload parachute descent rate doesn't meet the competition requirement (5 m/s)	 Our p time desc 	parachute need a lot of to gradually slow the ent rate	•	Correct the design for faster deccelaration
Several GPS data loss	 GPS satel 	cannot fully lock with lites	•	Add an antenna extension for the GPS

Lessons Learned

Fatwa Aulia Al-Haq

What Worked	What Didn't
Payload deployment	Payload is not in upright position
Payload aerobraking	Average of payload parachute descent rate doesn't meet requirement
Payload parachute deployment	Several GPS data loss
Uprighting mechanism	
Flag Deployment	
Payload and container camera	
No payload data loss	

Conclusions

Bamantara EEPISAT Are Ready to be The Winner of CanSat Competition 2023

- The main objective was succeed, except the upright position
- We observed that very important to think every possibilities to prevent the mission failure
- We should consider the effect of weather and field conditions
- We learned how to work on engineering project, adapting to a teamwork environment, implementing project and time management