CanSat 2023 Post Flight Review (PFR) Outline

\#1085
Bamantara EEPISAT

Presentation Outline

Section	Presenter	Pages
Introduction	Fatwa Aulia Al-Haq	$\underline{1-3}$
Systems Overview	Artaka Sunu Adhi Prasetya	$\underline{4-8}$
Concept of Operations and Sequence of Events	Fatwa Aulia Al-Haq	$\underline{\underline{9-12}}$
Flight Data Analysis	Achmad Bagus Okto Faerizqi	$\underline{13-23}$
Failure Analysis	Muhammad Tsaqif Mukhayyar	$\underline{24-25}$
Lessons Learned	Fatwa Aulia Al-Haq	$\underline{26-28}$

Team Organization

EEPISAT

System Overview

Artaka Sunu Adhi Prasetya

Payload Design Description (1/2)

Payload Major Components

Information

Payload will work after released from the container. DC motor and leadscrew mechanism are used to maintain the heat shield angle. The mass is focused at the bottom of the payload to keep stability and prevent from swaying.

Payload Design Description (2/2)

EEPISAT

Container Design Description (1/2)

Container Major Components

Information

The descent control of the container is maintained by a parachute. The parachute has a spill hole and three side holes to improve stability and maintain nadir direction.

Container Design Description (2/2)

EEPISAT

Container Major Parts and Components

On/Off Switch

Bonus Camera

Compression Spring

Attachment Point

Container's Battery

Velcro Locking System

Concept of Operations and Sequence of Events

Fatwa Aulia Al-Haq
 \title{
Comparison of Planned and Actual
 \title{
Comparison of Planned and Actual CONOPS
} CONOPS
}

CONOPS	Planned	Actual
Pre-Launch	- Arrive at the launch site - GCS and antenna setup - Sensor system calibration and communication with the GCS command - Final CanSat check completed - Activate and load CanSat into a rocket	- Arrive at the launch site \checkmark - GCS and antenna setup \checkmark - Sensor system calibration and communication with the GCS command $\sqrt{ }$ - Final CanSat check completed \checkmark - Activate and load CanSat into a rocket $\sqrt{ }$
Launch	- CanSat in a rocket launch - CanSat is released from the rocket (670-725 m) - Container parachute deployment with a rate of 15 m/s - The video camera started to record the separation of the payload then the payload open a heat shield at 500 m with a rate of $20 \mathrm{~m} / \mathrm{s}$ or less - Payload parachute deployment at 200 m with a rate of $5 \mathrm{~m} / \mathrm{s}$ - Payload landed in the upright position and raised a flag 500 mm above the base of the payload. Therefore video camera stopped recording - Payload shall stop transmitting data to GCS	- CanSat in a rocket launch \checkmark - CanSat is released from the rocket (670-725 m) \checkmark - Container parachute deployment with an average rate of $19.6 \mathrm{~m} / \mathrm{s}$ (in tolerance) \checkmark - The video camera started to record the separation of the payload then the payload open a heat shield at 500 m with an average rate of $17.5 \mathrm{~m} / \mathrm{s}$ (less than $20 \mathrm{~m} / \mathrm{s}$) \checkmark - Payload parachute deployment at 200 m with an average rate of $9.1 \mathrm{~m} / \mathrm{s}$ (out of tolerance) - Payload raised flag then video camera stopped recording, but didn't in upright position - Payload shall stop transmitting data to GCS \checkmark
PostLaunch	- CanSat recovery by location from last telemetry and buzzer - Inspection of CanSat damage - Take the SD Card from the payload - Analyze data received - PFR preparation	- CanSat recovery by location from last telemetry and buzzer $\sqrt{ }$ - Inspection of CanSat damage $\sqrt{ }$ - Take the SD Card from the payload \checkmark - Analyze data received - PFR preparation \checkmark

Comparison of Planned and Actual SOE (1/2)

CONOPS	Planned	Actual
Arrival	- Team arrival at the launch site - GCS and antenna setup - Check for any damages that may occur during travel	- Team arrival at the launch site - GCS and antenna setup \checkmark - Check for any damages that may occur during travel $\sqrt{ }$
Pre-Launch	- Communication inspection - Mechanism inspection - Assembly of the container and payload - Check the CanSat dimension and weight	- Communication inspection \checkmark - Mechanism inspection \checkmark - Assembly of the container and payload \checkmark - Check the CanSat dimension and weight
Rocket Integration	- Final CanSat inspection completed before launch - Turn on the CanSat, integrate it into the rocket, and ensure communication with GCS	- Final CanSat inspection completed before launch - Turn on the CanSat, integrate it into the rocket, and ensure communication with GCS \checkmark

Comparison of Planned and Actual SOE (2/2)

CONOPS	Planned	Actual

Flight Data Analysis

Achmad Bagus Okto Faerizqi

Payload Released at 500 Meters

[^0]
Heat Shield Deployed

Payload Altitude

Parachute Deployed at 200 Meters

[^1]
Payload Altitude Plot

Payload Temperature Sensor Plot

EEPISAT

Payload Battery Voltage Plot

EEPISAT

Information

The battery voltage had dropped when the heatshield was opening.

Tilt Sensor Data Plot

Payload GPS Position Plot

Payload Camera Video

Video properties

Video link: Click here

Information

The camera stopped recording shortly after LANDED state achieved. That state achieved while it is still descending because the elevation of landing area is lower than the launch pad. We didn't set the camera date and time.

Bonus Container Camera Video

Video properties

Video link: Click here

Information

Video shown in this slide is cutted to payload release moment only. The camera started recording before the CanSat turn in the rocket and stopped after the CanSat was recovered. The payload release wasn't seen because the release moment is very fast. We didn't set the camera date and time.

Failure Analysis

Muhammad Tsaqif Mukhayyar

Identification of Failures, Root Causes and Corrective Actions

| Failures | Causes | Corrective Actions |
| :--- | :--- | :--- | :--- |
| Payload is unable to upright after
 landing | Payload hit the crop before
 touchdown | - Change uprighting algorithm in
 Flight Software |
| Average of payload parachute
 descent rate doesn't meet the
 competition requirement $(5 \mathrm{~m} / \mathrm{s})$ | -Our parachute need a lot of
 time to gradually slow the
 descent rate | •Correct the design for faster
 deccelaration |
| Several GPS data loss | -GPS cannot fully lock with
 satellites | •Add an antenna extension for
 the GPS |

Lessons Learned

Fatwa Aulia Al-Haq

What Worked	Pascions of What Worked and
Payload deployment	Payload is not in upright position
Payload aerobraking	Average of payload parachute descent rate doesn't meet requirement
Payload parachute deployment	Several GPS data loss
Uprighting mechanism	
Flag Deployment	
Payload and container camera	
No payload data loss	

Conclusions

Bamantara EEPISAT Are Ready to be The Winner of CanSat Competition 2023

- The main objective was succeed, except the upright position
- We observed that very important to think every possibilities to prevent the mission failure
- We should consider the effect of weather and field conditions
- We learned how to work on engineering project, adapting to a teamwork environment, implementing project and time management

[^0]: 1085, 13:15:09, 904, F, DESCENT, 536.4, N, N, N, 37.2, 89.9, 8.0, 17:06:59, 683.0, 37.1952, $-80.5760,4,-4.28,98.82$, CXON
 $1085,13: 15: 10$ 905. F. .nFSCFNT. 516.1 $36.8,90.1,8.0,17: 07: 00,688.0,37.1953,-80.5760,4,-20.60,112.41$, CXON
 $1085,13: 15: 11$ 906, F, HS_DEPLOYED, 499.9. P, N, N, 36.4, 90.3, 8.0, 17:07:01, 700.3, 37.1954, $-80.5760,5,-77.54,-148.69$, CXON $1085,13: 15: 12,9 \cup /, \vdash, H S$ _UEPLUYEV, $482.6, P, N, N, 35.8,90.5,8.0,17: 07: 02,711.4,37.1955,-80.5760,5,-19.31,-159.44, C X O N$ $1085,13: 15: 13,908, F, H S$ DEPLOYED, $465.6, P, N, N, 35.4,90.7,8.0,17: 07: 03,4.3,37.1956,-80.5761,5,-15.27,-144.10$, CXON

[^1]: 1085, 13:15:27, 922, F,HS_DEPLOYED, 215.2, P, N, N, 31.2, 93.5, 8.1, 17:07:17, 643.7, 37.1963, -80.5758, 5, -4.47, 11.47, CXON
 1085, 13:15:29 924, F, PC_DEPLOYED, 187.1. P, C, N, 30.8, 93.8, 8.0, 17:07:19, 625.6, 37.1964, -80.5756, 5, -3.85, -56.78, CXON $1085,13: 15: 30,925, \vdash$, PL_DEPLUYED, 1/1.1, P, C, $N, 30.6,94.0,8.0,17: 07: 20,615.0,37.1964,-80.5756,5,-15.88,-8.88$, CXON $1085,13: 15: 31,926, F$, PC_DEPLOYED, 156.5, P, C, N, 30.6, 94.1, 8.0, 17:07:21, 7.1, 37.1965, -80.5755, 5, -7.90, -2.58, CXON

