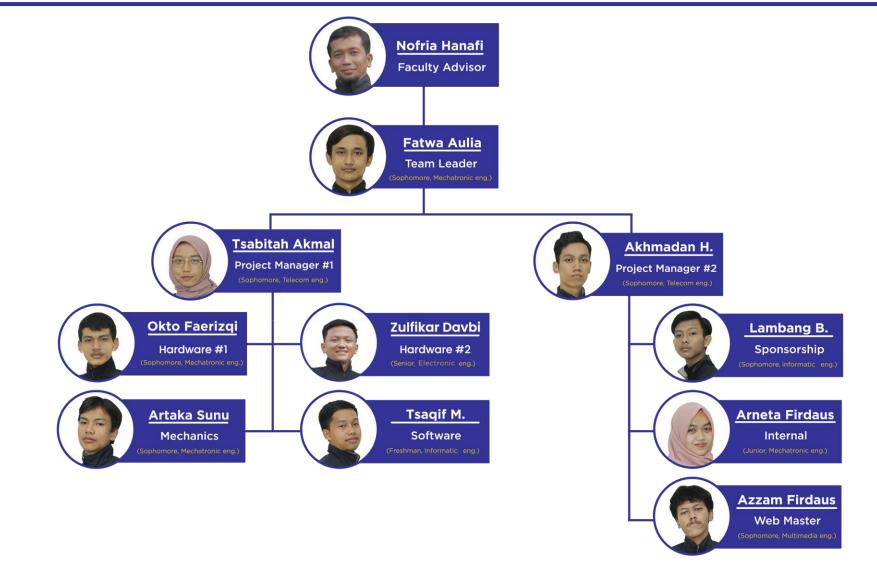


CanSat 2023 Preliminary Design Review (PDR) Outline Version 1.0

#1085 Bamantara EEPISAT


Presentation Outline

Section	Presenter	Pages
Introduction	Arneta Firdaus	<u>2-4</u>
Systems Overview	Tsabitah Akmal Al Mumtazah	<u>5-25</u>
Sensor Subsystem Design	Achmad Bagus Okto Faerizqi	<u>26-34</u>
Descent Control Design	Artaka Sunu Adhi Prasetya	<u>35-54</u>
Mechanical Subsystem Design	Artaka Sunu Adhi Prasetya	<u>55-86</u>
Communication and Data Handling (CDH) Subsystem Design	Achmad Bagus Okto Faerizqi	<u>87-99</u>
Electrical Power Subsystem (EPS) Design	Achmad Bagus Okto Faerizqi	<u>100-106</u>
Flight Software (FSW) Design	Muhammad Tsaqif Mukhayyar	<u>107-118</u>
Ground Control System (GCS) Design	Muhammad Tsaqif Mukhayyar	<u>119-127</u>
CanSat Integration and Test	Tsabitah Akmal Al Mumtazah	<u>128-137</u>
Mission Operations and Analysis	Tsabitah Akmal Al Mumtazah	<u>138-143</u>
Requirements Compliance	Tsabitah Akmal Al Mumtazah	<u>144-152</u>
Management	Arneta Firdaus	<u>153-164</u>

Acronyms

Acronyms	Definition	EPS	Electrical Power System	RAM	Random Access Memory
3D	Three Dimensional	FSW	Flight Software	RN	Requirement Number
150	Acrylonitrile Butadiene	GCS	Ground Control Station	RP-SMA	Reverse Polarity SMA
ABS	Styrene	GND	Ground	RTC	Real Time Clock
AC	Alternating Current	GPIO	General Peripheral Input Output	SD	Secure Digital
ADC	Analog to Digital Converter	GPS	Global Positioning System	SPI	Serial Peripheral Interface
BM	Bonus Mission	HDPE	High Density Polyethylene	UART	Universal Asynchronous Receiver/Transmitter(Serial)
CAD	Computer Aided Design	I/O	Input/Output	UTC	Universal Time Coordinated
0.711	Communication Data	I2C	Inter-Integrated Circuit		Next Generation
CDH	Handling	IDE	Integrated Development Environment	XCTU	Configuration Platform for XBEE/RF Solution
CONOPS	Concept of Operation				
CSV	Comma Separated Value	MCU	Microcontroller Unit	Acronyms	Verification Methods
dB	Decibel	PCB	Printed Circuit Board	А	Analysis
dBi	Decibel Isotropic	PFR	Post Flight Review	I.	Inspection
DC	Direct Current	PLA	Polylactic Acid	Т	Test
DoF	Degree of Freedom	PWM	Pulse Width Modulation	D	Demonstration

Systems Overview

Tsabitah Akmal Al Mumtazah

Mission Summary

Main Objectives	Bonus Objectives
 The mission is to simulate the landing sequence of a planetary probe Design a CanSat that shall consist of a container and a payload The CanSat shall be launched to an altitude ranging from 670 meters to 725 meters above the launch site and deployed near apogee After CanSat is deployed from the rocket, the CanSat shall descent using a parachute at a rate of 15 m/s At 500 meters, the CanSat shall release a payload that shall open a heat shield that will also be used as 	 A video camera shall be integrated into the container and point toward the payload The camera shall record the event when the payload is released from the container Video shall be in color with a minimum resolution of 640x480 pixels and a minimum of 30 frames per second The video shall be recorded and retrieved when the container is retrieved
that shall open a heat shield that will also be used as an aerobraking device with a descent rate of 20 m/s	External Objectives
 or less After the payload reaches 200 meters, the payload shall deploy a parachute and slow the descent rate to 5 m/s Once the payload has landed, it shall attempt to upright itself and raise a flag 500 mm above the base of the payload A video camera shall be included and point toward the ground during descent 	 We have the intention to acquire first place in CanSat Competition 2023 To increase experience through any engineering project, adapt to the teamwork environment, and implement project and time management

System Requirement Summary (1/6)

RN	Dequirement	Reasons	Driarity	V	erifi	on	
KIN	Requirement	Reasons	Priority	А	I	Т	D
1	Total mass of the CanSat (science probe and container) shall be 700 grams +/- 10 grams.	Competition Requirement	High	√	√	√	
2	CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.	Competition Requirement	High		√	√	
3	The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.	Competition Requirement	High		√		
4	The container shall be solid and fully enclose the science probes. Small holes to allow access to turn on the science probes are allowed. The end of the container where the probe deploys may be open.	Competition Requirement	High		√	√	
5	The rocket airframe shall not be used to restrain any deployable parts of the CanSat.	Competition Requirement	High		√		
6	The rocket airframe shall not be used as part of the CanSat operations.	Competition Requirement	High		√		
7	The container's first parachute shall not be enclosed in the container structure. It shall be external and attached to the container so that it opens immediately when deployed from the rocket.	Competition Requirement	High		√	√	√
8	The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5 m/s.	Competition Requirement	High	√		\checkmark	
9	0 altitude reference shall be at the launch pad.	Competition Requirement	High			\checkmark	

System Requirement Summary (2/6)

RN	Poquiromont	Reasons	Driarity	Verificat			on
KIN	Requirement	Reasons	Priority	А	Т	Т	D
10	All structures shall be built to survive 15 Gs of launch acceleration.	Competition Requirement	High		√	√	√
11	All structures shall be built to survive 30 Gs of shock.	Competition Requirement	High		√	√	√
12	All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high performance adhesives.	Competition Requirement	High		√	\checkmark	
13	All mechanisms shall be capable of maintaining their configuration or states under all forces.	Competition Requirement	High			\checkmark	
14	Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting vegetation on fire.	Competition Requirement	High		√		
15	XBEE radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBEE radios are also allowed.	Competition Requirement	High	√	√	√	
16	XBEE radios shall have their NETID/PANID set to their team number.	Competition Requirement	High		√	√	
17	XBEE radios shall not use broadcast mode.	Competition Requirement	High		√	√	
18	The container (if needed) and probe shall include an easily accessible power switch that can be accessed without disassembling the cansat and science probes and in the stowed configuration.	Competition Requirement	High		√		~

System Requirement Summary (3/6)

DN	Poquiroment		Driority	V	erifi	on	
RN	Requirement	Reasons	Priority	А		Т	D
19	The probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the cansat and in the stowed state.	Competition Requirement	High		√		√
20	An audio beacon is required for the probe. It shall be powered after landing.	Competition Requirement	High				√
21	The audio beacon shall have a minimum sound pressure level of 92 dB, unobstructed.	Competition Requirement	High		√	√	
22	Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed.	Competition Requirement	High		√		
23	An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.	Competition Requirement	High		√	√	
24	Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.	Competition Requirement	High		√	√	
25	The CanSat shall operate during the environmental tests laid out in Section 3.5.	Competition Requirement	High	\checkmark	~	√	√
26	The CanSat shall operate for a minimum of two hours when integrated into the rocket.	Competition Requirement	High	\checkmark	~	√	√
27	The probe shall be released from the container when the CanSat reaches 500 meters.	Competition Requirement	High	\checkmark		\checkmark	

System Requirement Summary (4/6)

RN	Dequirement	Reasons	Driority	Verifica			n
F (IN	Requirement	Reasons	Priority	А	T	Т	D
28	The probe shall deploy a heat shield after leaving the container.	Competition Requirement	High	√		\checkmark	
29	The heat shield shall be used as an aerobrake and limit the descent rate to 20 m/s or less.	Competition Requirement	High	√		\checkmark	
30	At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s +/- 1m/sec.	Competition Requirement	High	√		√	
31	Once landed, the probe shall upright itself.	Competition Requirement	High	√		√	
32	After uprighting, the probe shall deploy a flag 500 mm above the base of the probe when the probe is in the upright position.	Competition Requirement	High	√		\checkmark	
33	The probe shall transmit telemetry once per second.	Competition Requirement	High		\checkmark	\checkmark	
34	The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked.	Competition Requirement	High	√	√	√	√
35	The probe shall include a video camera pointing down to the ground.	Competition Requirement	High	√	\checkmark	√	
36	The video camera shall record the flight of the probe from release to landing.	Competition Requirement	High	√	\checkmark	\checkmark	\checkmark

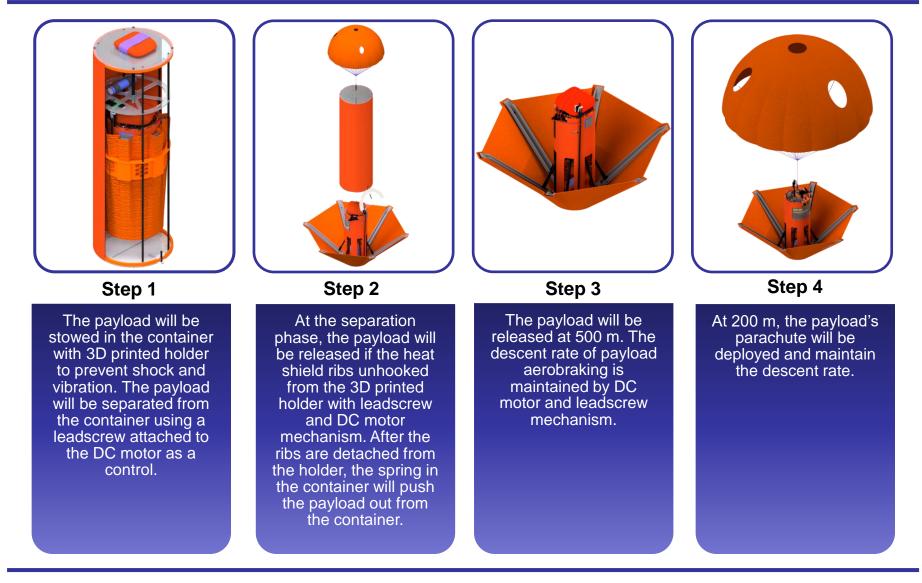
System Requirement Summary (5/6)

	Dequirement		Drievity	V	erifi	catic	on
RN	Requirement	Reasons	Priority	А	I.	Т	D
37	The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets.	Competition Requirement	High	√		√	√
38	The probe shall maintain mission time throughout the whole mission even with processor resets or momentary power loss.	Competition Requirement	High	\checkmark		√	\checkmark
39	The probe shall have its time set to within one second UTC time prior to launch.	Competition Requirement	High		√	√	
40	The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file.	Competition Requirement	High	√	√	√	√
41	In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the payload altitude.	Competition Requirement	High			√	~
42	The payload flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.	Competition Requirement	High		√	√	√
43	The ground station shall command the CanSat to start calibrating the altitude to zero when the CanSat is on the launch pad prior to launch.	Competition Requirement	High			√	
44	The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.	Competition Requirement	High		√	√	√
45	Telemetry shall include mission time with 0.01 second or better resolution.	Competition Requirement	High			√	

System Requirement Summary (6/6)

	Dequirement	Dequirement				V	erifi	catic	on
RN	Requirement	Reasons	Priority	А	1	Т	D		
46	Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.	Competition Requirement	High		√	√			
47	Each team shall develop their own ground station.	Competition Requirement	High	√	√	√			
48	All telemetry shall be displayed in real time during descent on the ground station.	Competition Requirement	High	√	√	√	\checkmark		
49	Teams shall plot each telemetry data field in real time during flight.	Competition Requirement	High		√	√			
50	The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBEE radio and a hand-held antenna.	Competition Requirement	High		√	√			
51	The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site.	Competition Requirement	High		√				
52	The ground station software shall be able to command the payload to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.	Competition Requirement	High		√	√			
53	When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the CanSat.	Competition Requirement	High	√	√	√	√		
BM	A video camera shall be integrated into the container and point toward the payload. The camera shall record the event when the payload is released from the container.	Mission Guide	High	√	√	√	~		

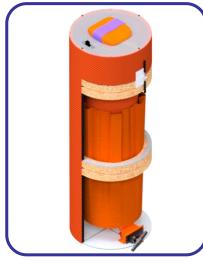
Configuration A


- The system will provide both passive and active descent control
- The electronic components will be fully enclosed within its structural body
- The payload is using leadscrew mechanism with DC motor to maintain its heat shield angle
- The 3D printed holder will be used to prevent shock and vibration of the payload
- A servo and two rubbers will be used to deploy the payload's parachute and flag mechanism

PROS	CONS
 The payload is more stable as its descent The bottom lids that aren't locked when releasing the payload make the container still rigid 	The 3D printed holder increases the mass significantly

System Level CanSat Configuration Trade & Selection (2/5)

Configuration B


- The system will provide passive descent control
- The electronic components will be fully enclosed within its structural body
- The payload is using servo mechanism and fixed stopper to maintain its heat shield angle
- The cork will be used to prevent shock and vibration of the payload
- Fixed stopper and cord will be used to deploy the payload's parachute and flag mechanism

PROS	CONS
 The container cover that opens to the side offers enough room for releasing the payload The system has passive descent control so it doesn't require any power 	 The hinges of the container are easily broken

System Level CanSat Configuration Trade & Selection (4/5)

Step 1

The payload will be stowed in the container with cork to prevent shock and vibration. The payload will be separated from the container using a rubber attached to servo as a control.

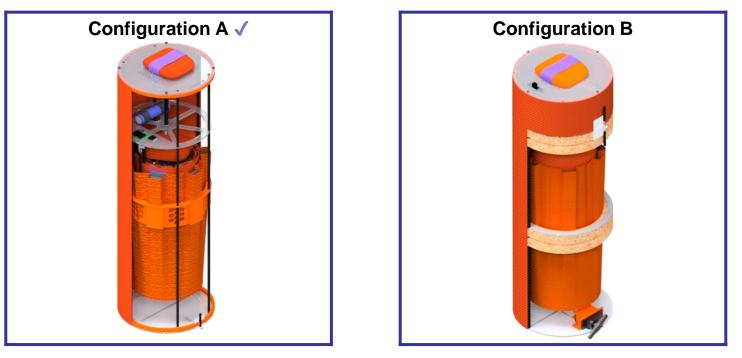
Step 2

At the separation phase, the container's body will open if the servo is unlocked, the spring pulls the body covers, and airflow pushes the body covers to the top. After the container's body is opened, the payload's heat shield ribs will be deployed by torsion springs to open a heat shield.

Step 3

The payload will be released at 500 m. The descent rate of payload aerobraking is maintained by servo and fixed stopper mechanism.

Step 4

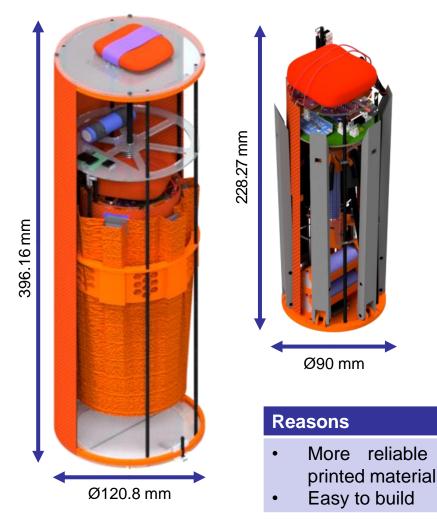

At 200 m, the payload's parachute will be deployed and maintain the descent rate.

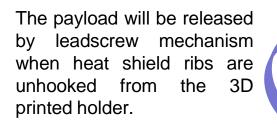
System Level CanSat Configuration Trade & Selection (5/5)

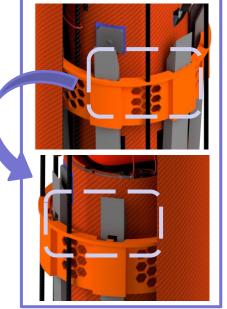
Configuration Selection

Selected: Configuration A

Reasons


- Both designs comply the requirements
- Configuration A is most likely to be succeed
- Configuration A provides more stable descent
- Configuration A has better vibration reduction material for stowing the payload in the container

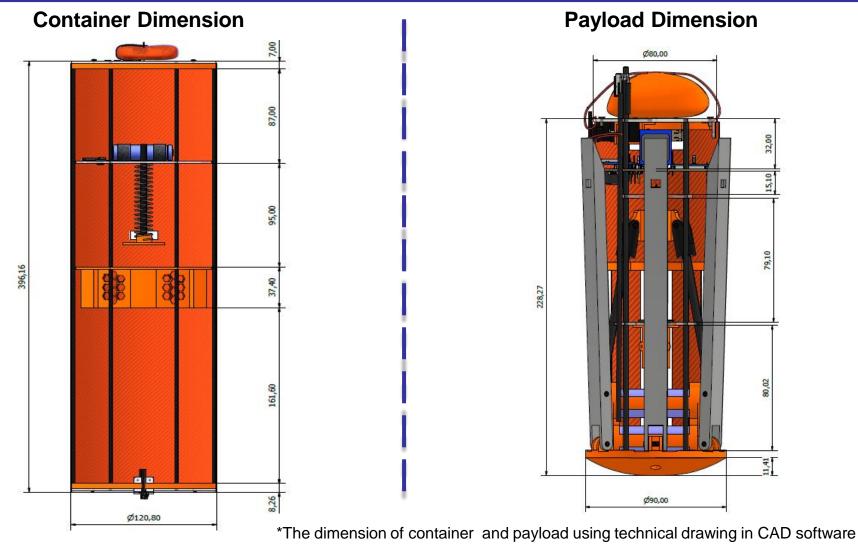

System Level Configuration Selection



Selected: Configuration A

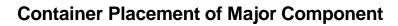
The rubber unlocking system will deploy the payload's parachute and raise a flag.

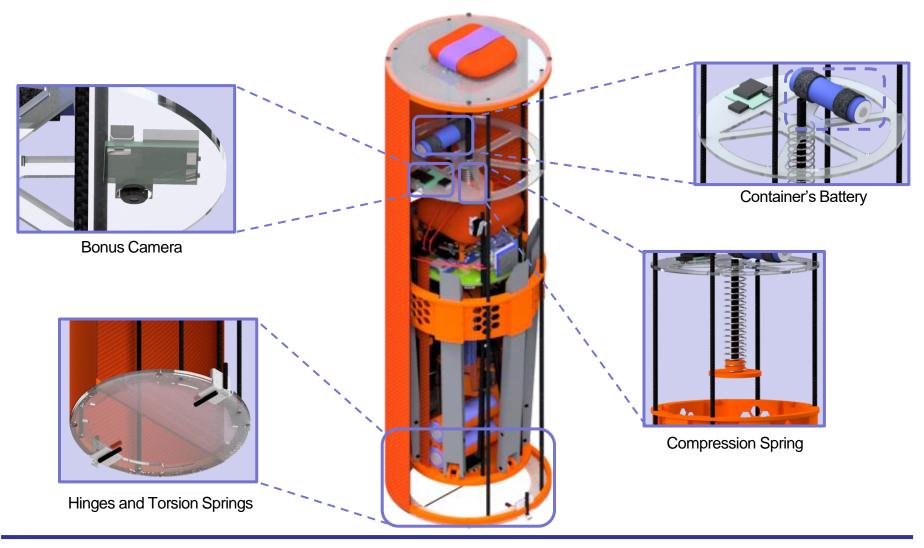
stow


system

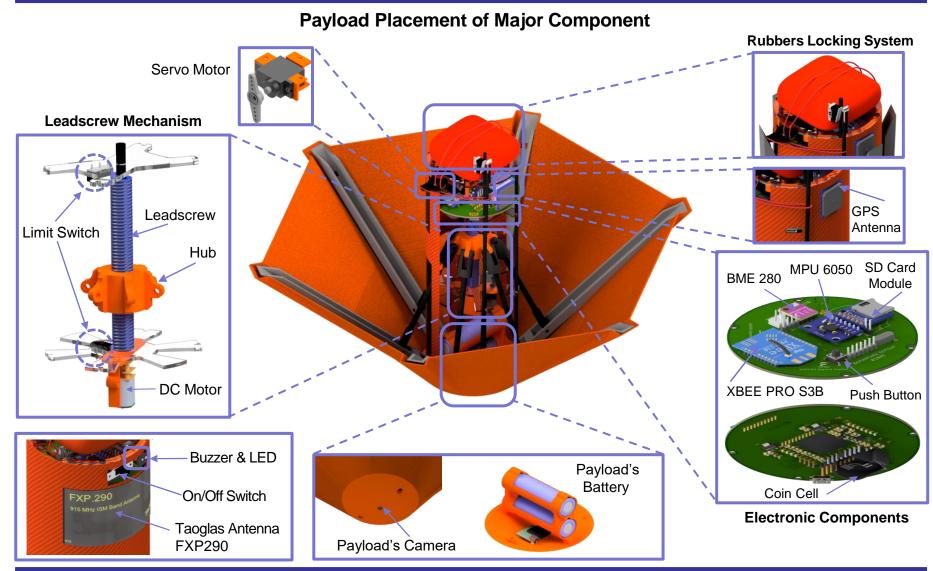
using

3D





*All measurement units are in mm


CELL X

Presenter: Tsabitah Akmal Al Mumtazah

CanSat 2023 PDR: Team 1085 Bamantara EEPISAT

Physical Layout (4/4)

Payload La	unch and Deployed Configu	
Container Parachute Container's Battery	The container separates from the rocket at an altitude of 670- 725 meters. The container will descend at a rate of 15 m/s using a parachute above the container.	670- 725 m
 Compression Spring Bonus Camera Carbon Rod Electronic Components of Payload 3D Printed Holder 	At an altitude of 500 meters, the payload will be released from the container and open a heat shield that will also be used as an aerobraking device, with a descent rate of 20 m/s or less.	
 Heat Shield Ribs Container Body Cover 	At an altitude of 200 meters, the parachute will be released from the payload. It will make the descent at a rate of 5 m/s.	(200 m)
Bottom Lid Hinges and Torsion Springs	The payload lands and after upright itself the payload raises a flag 500 mm above the base of the payload.	(0 m

Payload Launch and Deployed Configuration

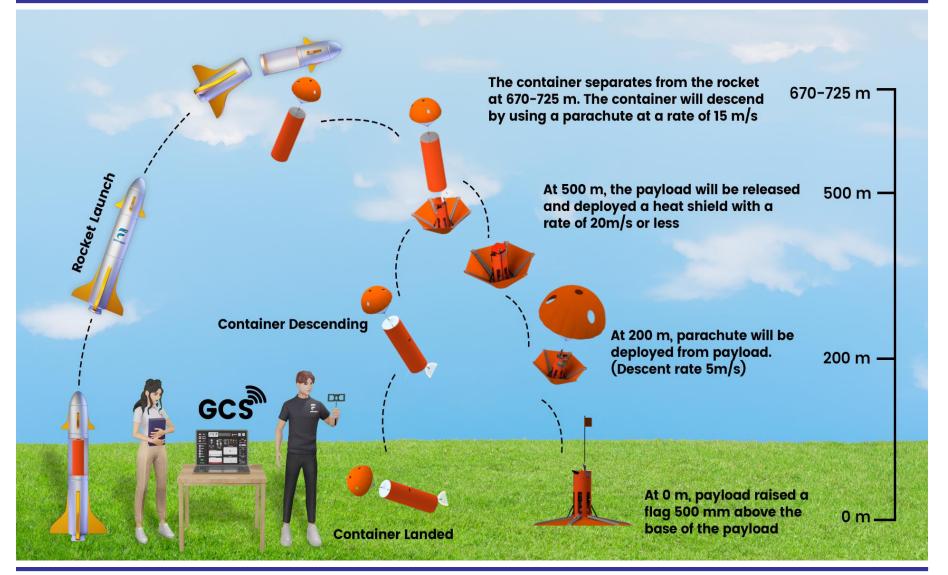
Presenter: Tsabitah Akmal Al Mumtazah

Pre-Launch

- · Arrive at the launch site
- · GCS and antenna setup
- · Sensor system calibration and communication with the GCS command
- Final CanSat check completed
- Activate and load CanSat into a rocket

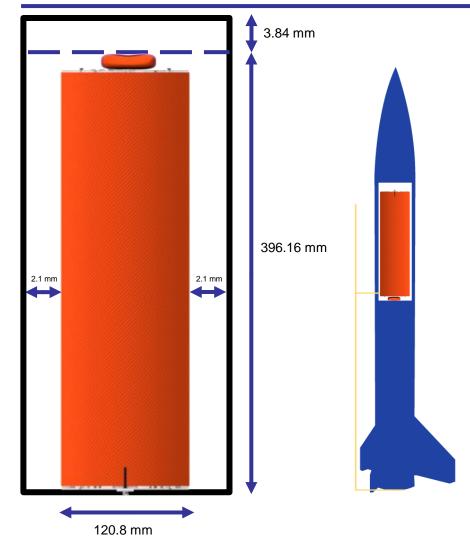
Launch

- CanSat in a rocket launch
- CanSat is released from the rocket (670–725 m)
- · Container parachute deployment with a rate of 15 m/s
- The video camera started to record the separation of the payload then the payload open a heat shield at 500 m with a rate of 20 m/s or less
- · Payload parachute deployment at 200 m with a rate of 5 m/s
- Payload landed in the upright position and raised a flag 500 mm above the base of the payload. Therefore video camera stopped recording
- Payload shall stop transmitting data to GCS


Post-Launch

- · CanSat recovery by location from last telemetry and buzzer
- Inspection of CanSat damage
- Take the SD Card from the payload
- Analyze data received
- PFR preparation

System Concept of Operations (2/2)



Launch Vehicle Compatibility

Dimension (Section)	Height (mm)	Diameter (mm)
Rocket (Requirement Dimensions)	400	125
Container	396.16	120.8
Payload	228.27	90

Information:

- 1. CanSat consists of two parts: container and payload
- 2. No sharp protrusions
- 3. The dimension of CanSat is designed to prevent shaking in the rocket and provide a gap to release
- 4. Rocket will not be used as part of CanSat operations

Sensor Subsystem Design

Achmad Bagus Okto Faerizqi

Sensor Subsystem Overview

Sensor Type	Selected Model	Function	Located In
Air Pressure	BME280	To measure air pressure in order to calculate altitude	Payload
Air Temperature	BME280 To measure air temperature inside of the payload		Payload
Battery Voltage	ADC Voltage Divider	To measure battery voltage of the payload	Payload
Tilt Sensor	MPU6050	To detect orientation or inclination	Payload
GPS	BN-220	To obtain position or location	Payload
Camera	Quelima SQ11	To record video during the mission process	Payload

Payload Air Pressure Sensor Trade & Selection

Model	Interface	Resolution (hPa)	Supply Current (µA)	Range (hPa)	Mass (g)	Size (mm)	Cost (\$)
BME 280	I2C	0.0018	2.8	300 – 1100	1.0	13.5 x 10.5 x 2	9.05
BMP 388	I2C/SPI	0.3	3.4	300 – 1250	1.2	21.6 x 16.6 x 3	9.95
MPL115A2	I2C	1.5	6	500 – 1500	0.61	19.2 x 17.9 x 2.9	7.95

Selected Sensor	Reasons
GND SCL SDA BME280 ✓	 Low supply current Can be used for multiple measurements We have experience working with this sensor

Payload Air Temperature Sensor Trade & Selection

Model	Interface	Resolution (°C)	Supply Current (µA)	Range (°C)	Accuracy (°C)	Mass (g)	Size (mm)	Cost (\$)
BME 280	I2C	0.01	2.8	-40 ~ 85	±1	1.0	13.5 x 10.5 x 2	9.05
BMP 388	I2C/SPI	0.00016	3.4	-40 ~ 85	±2	0.1	21.6 x 16.6 x 3	9.95
MPL115 A2	I2C	0.18	6	-40 ~ 85	±1	0.61	19.2 x 17.9 x 2.9	7.95

Selected Sensor	Reasons
GND SCL SDA BME280 ✓	 Can be used for multiple measurements Smaller size than the others Low supply current

Payload Battery Voltage Sensor Trade & Selection

Model	Interface	Resolution (bits)	Voltage (V)	Mass (g)	Size (mm)	Cost (\$)
ADC STM32F407VGT6	Analog	12	3.3	Embedded	Embedded	0
Teensy 4.0	I2C/SPI	12	3.3 - 5	Embedded	Embedded	32.13
INA 260	I2C	16	3.6	0.61	19.2 x 17.9 x 2.9	1.77

Selected Sensor	Reasons
STITE A VC 346 M ADC STM32F407VGT6 √	 Minimize board size because included in the microprocessor More precise No cost (included in STM32F407VGT6)

Payload Tilt Sensor Trade & Selection

Model	Interface	Resolution (bits)	Voltage (V)	DoF	Mass (g)	Size (mm)	Cost (\$)
MPU6050	I2C	12	3.3	3 axis	2.1	14 x 12 x 2	1.5
BNO055	I2C	16	3.3	3 axis	2	5.2 x 3.8 x 1.1	40.80
Adafruit 4485	I2C	16	2.3	3 axis	5	25.6 x 17.8 x 4.6	1.77

Selected Sensor	Reasons
MPU6050 √	 Affordable Lightweight High accuracy based on the tolerance

Payload GPS Sensor Trade & Selection

Model	Interface	Resolution (m)	Supply Current (mA)	Rate (Hz)	Mass (g)	Size (mm)	Cost (\$)
BN-220	UART	± 2.5	67	1	5.3	22 x 20 x 6	14
MTK MT3339	UART	± 3.0	85	16	4	16 x 16 x 5	42
UBLOX NEO-6M	UART	± 2.5	67	5	1.0	16 x 12.2 x 2.4	5.49

Selected Sensor	Reasons
BN-220 √	 Lightweight Low energy Good sensitivity

Payload Camera Trade & Selection

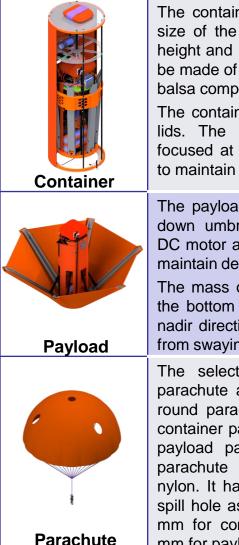
Model	Interface	Resolution (Pixels)	Voltage (V)	Frame Rate (Hz)	Mass (g)	Size (mm)	Cost (\$)
Quelima SQ11	Digital	1280 x 720	5	30	5.2	23 x 23 x 23	4.53
Adafruit Mini Spy Camera	SPI	640 x 480	5	30	2.8	28.5 x 17 x 4.2	12.5
TTL Serial Camera	SPI	640 x 480	5	30	3	32 x 32 x 32	45

Selected Camera	Reasons		
Quelima SQ11 ✓	 Affordable with good quality Wide angle lens SD Card slot available 		

Bonus Camera Trade & Selection

Model	Interface	Resolution (Pixels)	Voltage (V)	Frame Rate (Hz)	Mass (g)	Size (mm)	Cost (\$)
Quelima SQ11	Digital	1280 x 720	5	30	5.2	23 x 23 x 23	4.53
Adafruit Mini Spy Camera	SPI	640 x 480	5	30	2.8	28.5 x 17 x 4.2	12.5
TTL Serial Camera	SPI	640 x 480	5	30	3	32 x 32 x 32	45

Selected Camera	Reasons		
Quelima SQ11 ✓	 Affordable with good quality Wide angle lens SD Card slot available 		


Descent Control Design

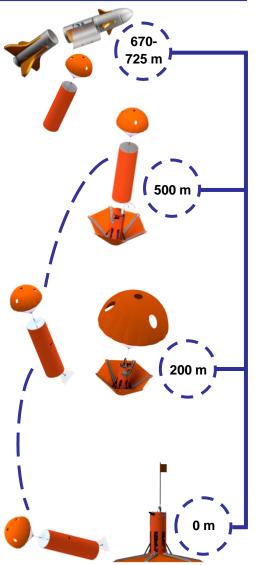
Artaka Sunu Adhi Prasetya

Descent Control Overview

The container's shape is cylinder. The size of the container is 396.16 mm in height and 120.8 mm in diameter. It will be made of ABS, acrylic, fiberglass, and balsa composite.

The container has an openable bottom lids. The mass of the container is focused at the bottom of the container to maintain the stability of the container.

The payload is shaped like an upsidedown umbrella. The payload is using DC motor and leadscrew mechanism to maintain descent stability.


The mass of the payload is focused at the bottom of the payload to maintain nadir direction and prevent the payload from swaying

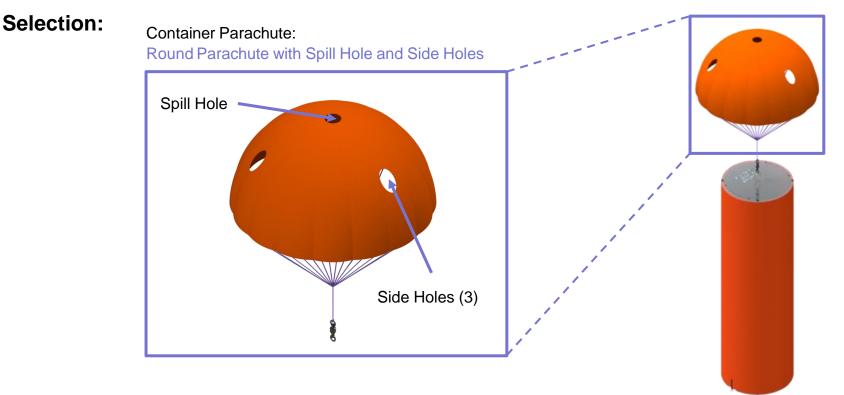
The selected type of the container parachute and payload parachute is a round parachute. The diameter of the container parachute is 222 mm and the payload parachute is 547 mm. The parachute is made of orange ripstop nylon. It has three side holes and one spill hole as stabilizer with diameter 22 mm for container parachute and 54.7 mm for payload parachute. The container separates from the rocket at an altitude of 670-725 meters. The container will descent at a rate of 15 m/s using a parachute above the container.

At an altitude of 500 meters, the payload will be released from the container and open a heat shield that will also be used as an aerobraking device, with a descent rate of 20 m/s or less.

At an altitude of 200 meters, the parachute will be released from the payload. It will make the descent at a rate of 5 m/s

The payload lands and after upright itself the payload raises a flag 500 mm above the base of the payload.

Container Descent Control Strategy Selection and Trade (1/2)


Parachutes selection helps to set up container descent design and operation. The parachute manages the descent of the container.

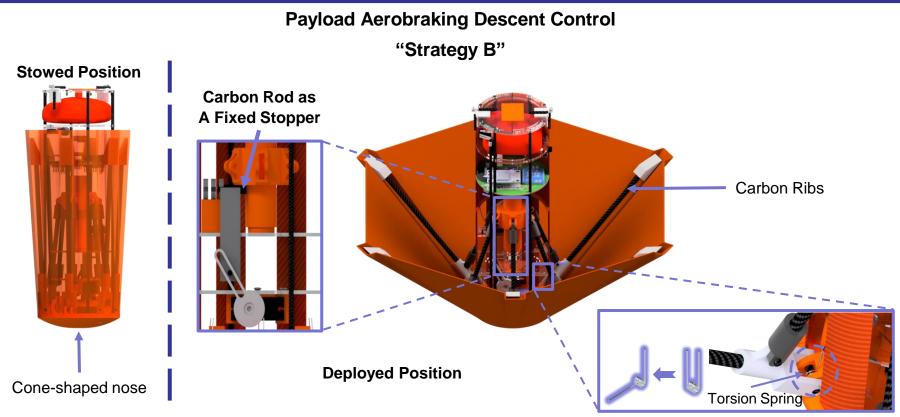
	e with spill hole and holes	da Vinci's Parachute		Ram-air Parachute	
PROS	CONS	PROS	CONS	PROS	CONS
High drag coefficient High durability		The pyramid shape allows for a gradual descent	Not providing enough drag	Ram-air parafoils are steerable	Less drag force
while opening	Difficult to fobrigate				
Open quickly	Difficult to fabricate				
Stable with spill hole and side holes		Smoother ride	The corner and edges easy to damage	Open quickly	Faster landing
Lightweight					

Container Descent Control Strategy Selection and Trade (2/2)

Selected: Round Parachute with Spill Hole and Side Holes

Reasons

- Descent rate can be easily modified
- Lightweight
- The parachute's spill hole and side holes can improve stability

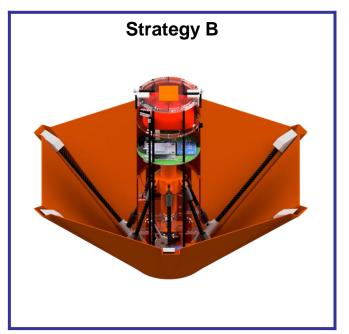

Information

- The payload is shaped like an upside-down umbrella
- A cone-shaped nose is designed to reduce drag caused by air resistance
- Using DC motor and leadscrew mechanism to deploy a heat shield
- Six ribs connected to the hub

Payload Aerobraking Descent Control Strategy Selection and Trade (2/3)

Information

- The payload is shaped like an upside-down umbrella
- Using torsion springs to deploy a heat shield
- Carbon rod as a fixed stopper
- Torsion springs are located and attached to the ribs

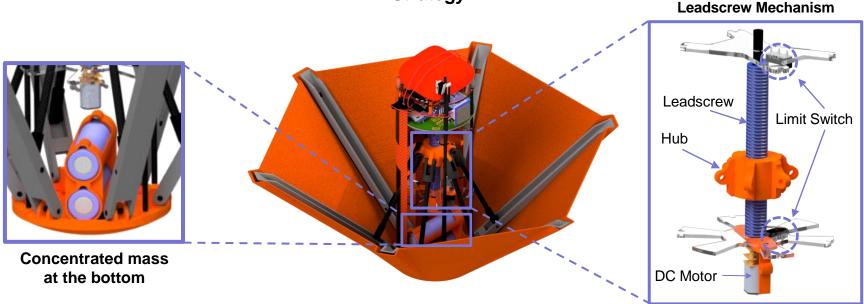

Payload Aerobraking Descent Control Strategy Selection and Trade (3/3)

CELL X

"Selection"

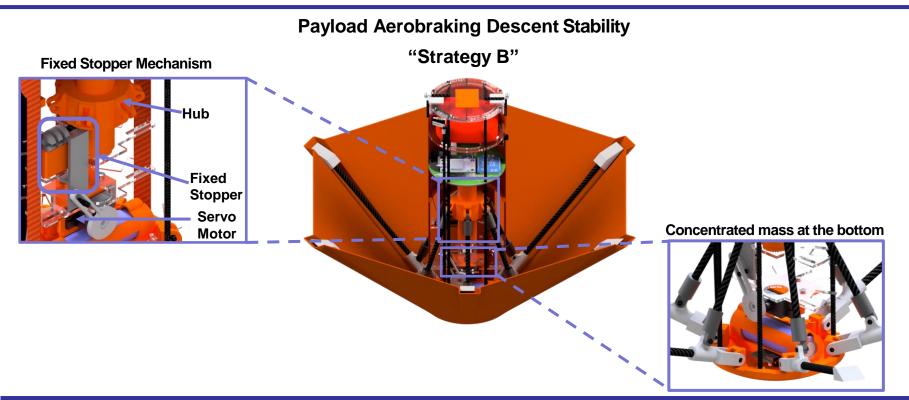
Selected: Strategy A

Reasons


We choose strategy A because the mechanism control is more flexible and the descent rate is easily adjustable, whereas strategy B offers less control. Furthermore, the DC motor and leadscrew mechanism provides precise control over the descent rate.

Payload Aerobraking Descent Stability Control Strategy Selection and Trade (1/3)

"Strategy A"


Information

Type of Stability: Active Control Description:

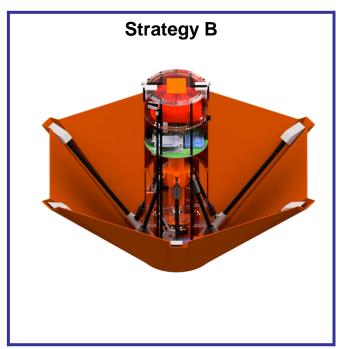
The payload is using leadscrew and DC motor to maintain descent stability. Other stability is maintained by placing major components at the bottom of the payload, so that the mass is focused at the bottom. This configuration helps to maintain the nadir direction and prevents the payload from swaying.

Payload Aerobraking Descent Stability Control Strategy Selection and Trade (2/3)

Information

Type of Stability: Passive Control Description:

The payload is using servo and fixed stopper mechanism to maintain descent stability. The servo mechanism can be used to control the locker position of the fixed stopper, which limits the angle of the heat shield ribs. By controlling the position of the locker, the payload can maintain the nadir direction and prevents the payload from swaying. The mass is also focused at the bottom to maintain stability.



Payload Aerobraking Descent Stability Control Strategy Selection and Trade (3/3)

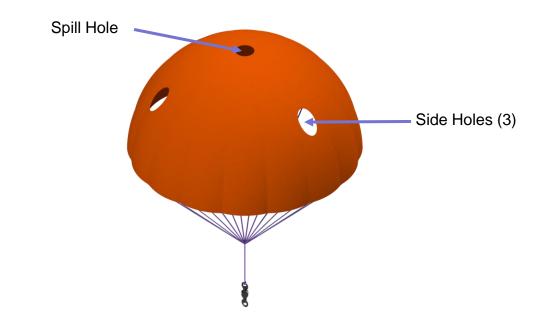
Payload Aerobraking Descent Stability

"Selection"

Selected: Strategy A

Reasons

- Increase the precision and reliability of the aerobraking process
- More stable descent
- Ensuring a safe and controlled landing



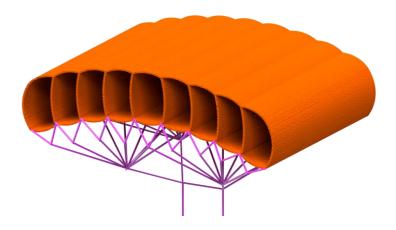
Payload Parachute Descent Control Strategy Selection and Trade (1/4)

Payload Parachute Descent Control

"Strategy A" – Round Parachute with Spill Hole and Side Holes

Information

Round parachutes are relatively simple to fold and pack, making them easy to stow and transport. The round shape makes the parachute easy to open, which reduces the risk of a malfunction. Round parachute with spill hole and side holes are used to stabilize the parachute so the nadir direction can be maintained.



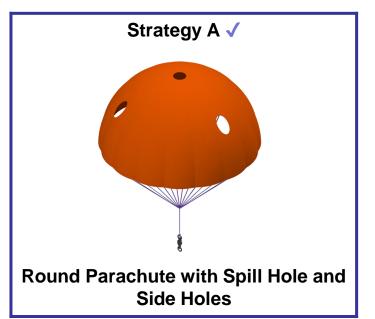
Payload Parachute Descent Control Strategy Selection and Trade (2/4)

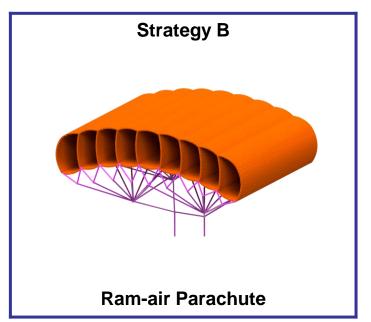
Payload Parachute Descent Control

"Strategy B" – Ram-air Parachute

Information

Ram-air parachute systems have a greater glide ratio, which can increase the distance that can be covered during descent. Ram-air parachute systems are better able to handle high winds and turbulent conditions. Ram-air parachutes can be used in a variety of applications, making them suitable for a wide range of payloads and descent scenarios.




Payload Parachute Descent Control Strategy Selection and Trade (3/4)

"Selection"

Selected: Strategy A

Reasons

We choose the round parachute with spill hole and side holes for the payload because descent rate of the round parachute with spill hole can be easily modified. Parachute is more stable if it has a spill hole and side holes. Spill hole helps to prevent the parachute from spinning excessively in the air while the side holes help to prevent the parachute from drifting too much in one direction.

Payload Parachute Descent Control Strategy Selection and Trade (4/4)

Payload Parachute Descent Control

"Parachute Material"

Selected: Ripstop Nylon ✓

Ripsto	Ripstop Nylon		Plastic HDPE		/lar
PROS	CONS	PROS	CONS	PROS	CONS
More durable	Expensive	Cheap	Flammable		Absorbs moisture
Affordable				Heat resistant	Low
Low moisture absorbency		o stitch Lightweight Les			compressive strength
Lightweight	Difficult to stitch		Less durable		Expensive
High strength					

The descent rate of each descent phase will be estimated using different parameters						
Container Parachute	Payload Parachute	Payload Aerobraking				
 Parameters: Diameter of Parachute (Dp) Diameter of spill hole and side holes (Dsh) 	 Parameters: Diameter of Parachute (Dp) Diameter of spill hole and side holes (Dsh) 	Parameters: Radius of heat shield (<i>Rhs</i>) 				
Requirement: Descent rate of 15 m/s ($\pm 5 m/s$)	Requirement: Descent rate of 5 m/s (\pm 1 m/s)	Requirement: Descent rate of 20 m/s or less				

Container Parachute

We use the range of descent velocity between minimum [V min = 10 m/s] and maximum [Vmax = 20 m/s] to determine diameter of parachute

$$\sqrt{\frac{8 \times m \times g}{\rho \times (v_{max})^2 \times \pi \times Cd}} \leq Dp \leq \sqrt{\frac{8 \times m \times g}{\rho \times (v_{max})^2 \times \pi \times Cd}}$$

$$\sqrt{\frac{8 \times 0.7 \times 9.8}{1.225 \times (20)^2 \times 3.14 \times 1.28}} \leq Dp \leq \sqrt{\frac{8 \times 0.7 \times 9.8}{1.225 \times (10)^2 \times 3.14 \times 1.28}}$$

$$0.166 \leq Dp \leq 0.333$$
Information:
$$Dp = The diameter of the parachute (m)$$

$$v = Descent speed (m/s)$$

$$\pi = 3.14$$

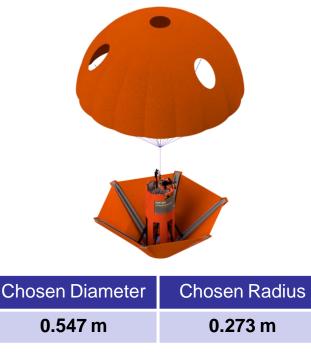
$$g = gravitational acceleration (9.8 m/s^2)$$

$$Dsh = Spill hole and side holes diameter (m)$$
*Assumption
*Cd = 1.28 (Drag coefficient of parachute)
*m = 0.7 kg (container + payload)
*\rho = air density (1.225 kg/m^3)

Diameter of the spill hole and side holes is chosen to be 10% of the diameter of parachute Diameter of spill hole and side holes = $Dsh = Dp \times 10\% = 0.0222 \text{ m}$ Spill hole and side holes radius = $\frac{Dsh}{2} = 0.0111 \text{ m}$

Payload Parachute

We use the range of descent velocity between minimum [V min = 4 m/s] and maximum [Vmax = 6 m/s] to determine diameter of parachute


$$\sqrt{\frac{8 \times m \times g}{\rho \times (v_{max})^2 \times \pi \times Cd}} \le Dp \le \sqrt{\frac{8 \times m \times g}{\rho \times (v_{max})^2 \times \pi \times Cd}}$$
$$\sqrt{\frac{8 \times 0.5 \times 9.8}{1.225 \times (6)^2 \times 3.14 \times 1.28}} \le Dp \le \sqrt{\frac{8 \times 0.5 \times 9.8}{1.225 \times (4)^2 \times 3.14 \times 1.28}}$$

$$0.47 \leq Dp \leq 0.70$$

Information:

Dp = The diameter of the parachute (m) v = Descent speed (m/s) $\pi = 3.14$ g = gravitational acceleration (9.8 m/s²) Dsh = Spill hole and side holes diameter (m) ***Assumption** * Cd = 1.28 (Drag coefficient of parachute) + m = 0.5 ha (newload)

*
$$m = 0.5 kg (payload)$$

* $\rho = air density (1.225 kg/m^3)$

Diameter of the spill hole and side holes is chosen to be 10% of the diameter of parachute Diameter of spill hole and side holes = $Dsh = Dp \times 10\% = 0.0547 \text{ m}$ Spill hole and side holes radius = $\frac{Dsh}{2} = 0.0273 \text{ m}$

Payload Heat Shield

We use the range of descent velocity between minimum [V min = 10 m/s] and maximum [Vmax = 20 m/s] to determine the radius of heat shield

$$\sqrt{\frac{2 \times m \times g}{\rho \times (v_{min})^2 \times \pi \times Cd}} \le Rhs \le \sqrt{\frac{2 \times m \times g}{\rho \times (v_{max})^2 \times \pi \times Cd}}$$

$$\sqrt{\frac{2 \times 0.5 \times 9.8}{1.225 \times (20)^2 \times 3.14 \times 0.47}} \le Rhs \le \sqrt{\frac{2 \times 0.5 \times 9.8}{1.225 \times (10)^2 \times 3.14 \times 0.47}}$$

 $0.116 \leq Rhs \leq 0.232$

Information:

Rhs = The Radius of the heat shield (m) v = Descent speed (m/s) $\pi = 3.14$ g = gravitational acceleration (9.8 m/s²)*Assumption * Cd = 0.47 (when heat shield deploy 45°) (Drag coefficient of heat shield)

*m = 0.5 kg (payload)

* $\rho = air \ density \ (1.225 \ kg/m^3)$

Chosen Radius	Chosen Diameter		
0.155 m	0.310 m		

Descent Rate Estimates (5/6)

	Information						
Container mass : 228.1 g Payload mass : 473.37 g Total mass : 701.47 g							
CanSat (Container + Payload) Descent Rate	Payload Aerobraking Descent Rate	Payload Parachute Descent Rate					
$\boldsymbol{v} = \sqrt{\frac{8 \times m \times g}{\rho \times (Dp)^2 \times \pi \times Cd}}$ $\boldsymbol{v} = \sqrt{\frac{8 \times (0.7) \times (9.8)}{1.225 \times (0.222)^2 \times (3.14) \times (1.28)}}$ $\boldsymbol{v} = 15.03 \ \mathbf{m/s}$	$\boldsymbol{v} = \sqrt{\frac{2 \times m \times g}{\rho \times (Rhs)^2 \times \pi \times Cd}}$ $\boldsymbol{v} = \sqrt{\frac{2 \times (0.47) \times (9.8)}{1.225 \times (0.155)^2 \times (3.14) \times (0.47)}}$ $\boldsymbol{v} = 14.56 \ \mathbf{m/s}$	$\boldsymbol{v} = \sqrt{\frac{8 \times m \times g}{\rho \times (Dp)^2 \times \pi \times Cd}}$ $\boldsymbol{v} = \sqrt{\frac{8 \times (0.47) \times (9.8)}{1.225 \times (0.547)^2 \times (3.14) \times (1.28)}}$ $\boldsymbol{v} = 5.00 \text{ m/s}$					

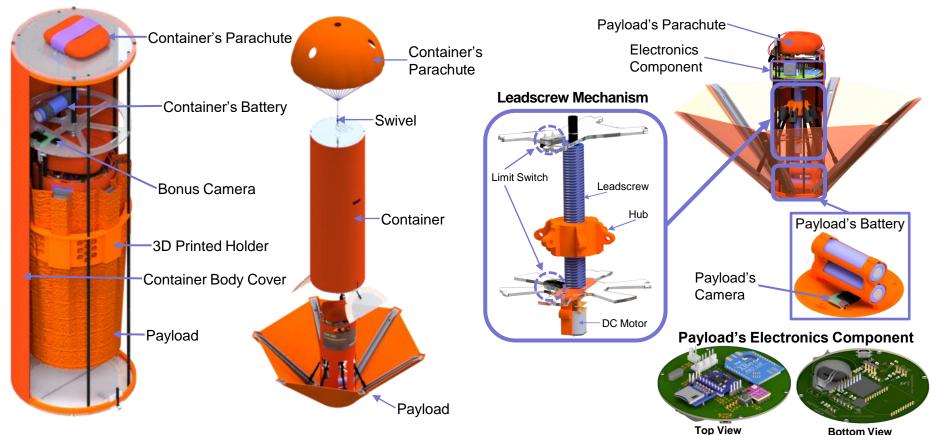
Final Result

	Parachute and Heat Shield Summary						
Altitude	The descent rate each descent phase will be estimated using parameters						
725-500 m	Type parachute: Round parachute The diameter of container parachute: 0.222 m Spill hole diameter: 0.0222 m The descent speed: 15.03 m/s						
500-200 m	The radius of heat shield: 0.155 m The descent speed: 14.56 m/s						
200-0 m	Type parachute: Round parachute The diameter of payload parachute: 0.547 m Spill hole diameter: 0.0547 m The descent speed: 5.00 m/s						
	Container Summarv						

The container has a parachute to manage descent control. The parachute has spill hole and sides holes to improve stability and maintain nadir direction.

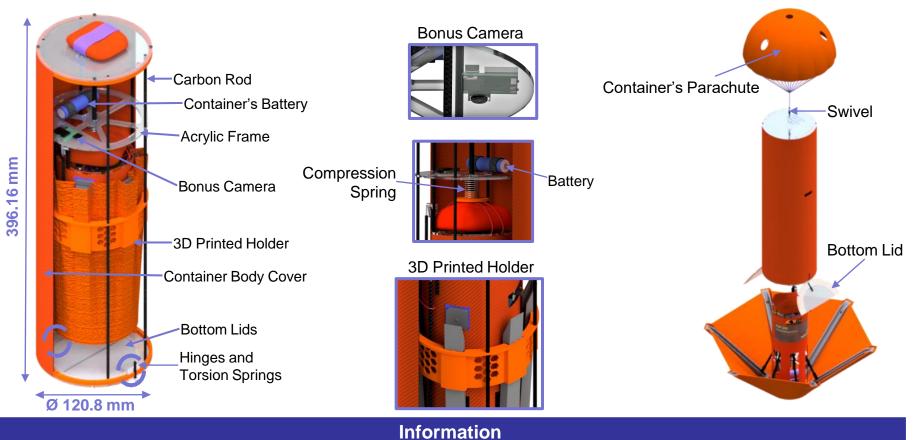
Payload Summary

The payload is using active control. DC motor and leadscrew mechanism are used to maintain the heat shield angle. The focus of mass is in the bottom of the payload to keep the stability and prevent from swaying.


Mechanical Subsystem Design

Artaka Sunu Adhi Prasetya

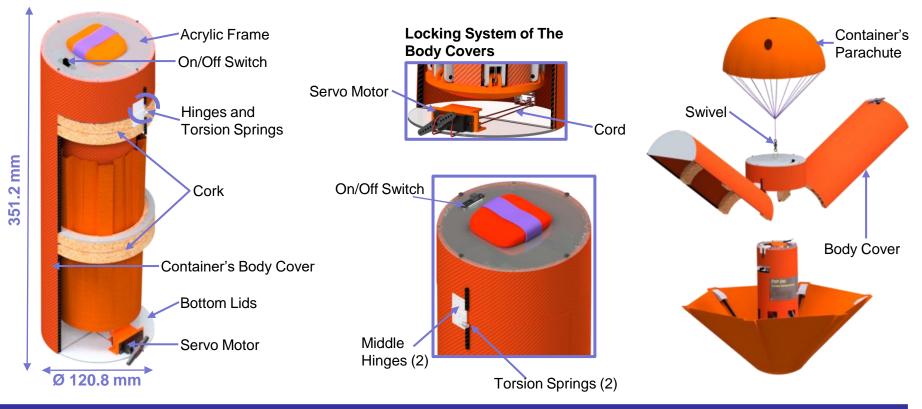
Mechanical Subsystem Overview


Container	Payload
Material: Acrylic, ABS+, Fiberglass Parachute: Ripstop Nylon Note: The container has a parachute	Material: ABS+, Acrylic, Fiberglass Parachute: Ripstop Nylon Note: The payload will be actively controlled by DC motor and leadscrew mechanism. The payload has a parachute

Presenter: Artaka Sunu Adhi Prasetya

Container Mechanical Layout of Components Trade & Selection (1/5)

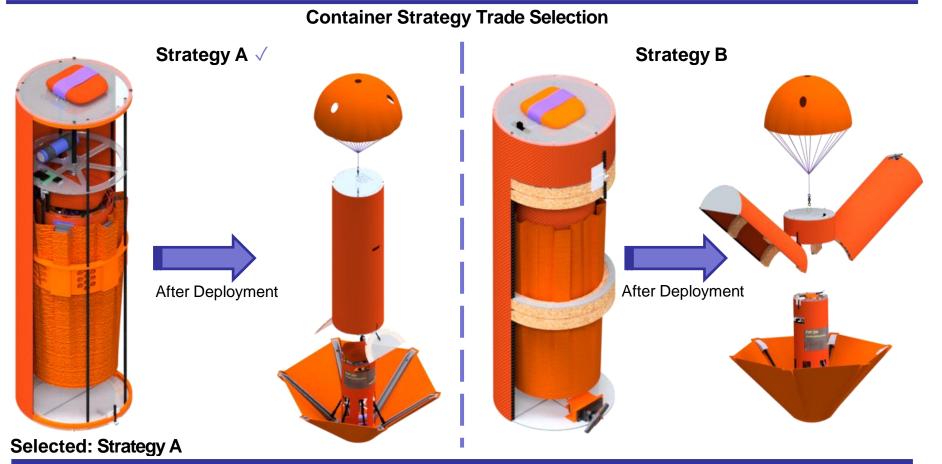
Container Strategy A – Mechanical Layout



- 1. The container has two hinges combined with spring located at bottom of the container
- 2. The bottom lids are openable
- 3. After the ribs of the heat shield are unhooked from the 3D printed holder using the DC motor and leadscrew mechanism, the spring inside the container pushes it downward until it hits the bottom lids. This caused the payload to be released

Container Mechanical Layout of Components Trade & Selection (2/5)

Container Strategy B – Mechanical Layout


Information

- 1. The container has two hinges located at the middle of the container
- 2. The container has two springs located beside the middle hinges
- 3. The body covers are openable
- 4. The spring will pull the body covers when its opened. At the same time, airflow will push the body covers up

Container Mechanical Layout of Components Trade & Selection (3/5)

Reasons

- 1. There is no need for a door locker
- 2. It has better durability
- 3. Feasible

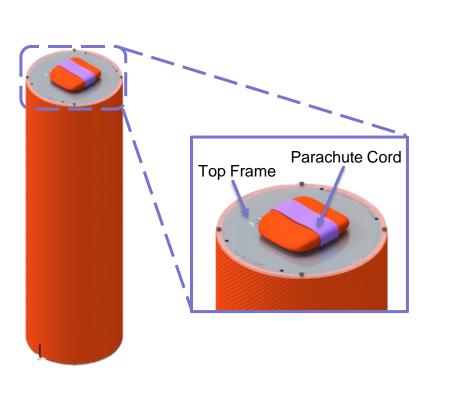
Container Mechanical Layout of Components Trade & Selection (4/5)

Container Material Trade Selection (1/2)

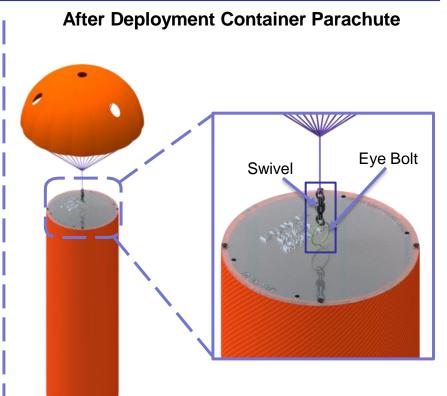
Container Body					
Cover		Material	Density (g/cm ³)	Durability (MPa)	Cost (\$)
Selected: Fiberglass		Fiberglass	2.53	300	10.0
Reasons: lightweight, high durability, sturdy, affordable		PLA+	1.23	57.8	15.22
Container Frame		Material	Density (g/cm ³)	Durability (MPa)	Cost (\$)
				48.0	COSI (\$)
Selected: ABS+ and Acrylic		ABS+	ABS+ 1.04		12.09
Reasons: lightweight, heat		PLA+	1.23	57.8	15.22
resistant, sturdy, good combination		Acrylic	1.18	65	1.39
Container Lids		Material	Density (g/cm ³)	Durability (MPa)	Cost (\$)
Selected: Acrylic		ABS+	1.04	48.0	12.09
Reasons: high durability an	d	PLA+	1.23	57.8	15.22
cheap	I	Acrylic	1.18	65	1.39

Container Mechanical Layout of Components Trade & Selection (5/5)

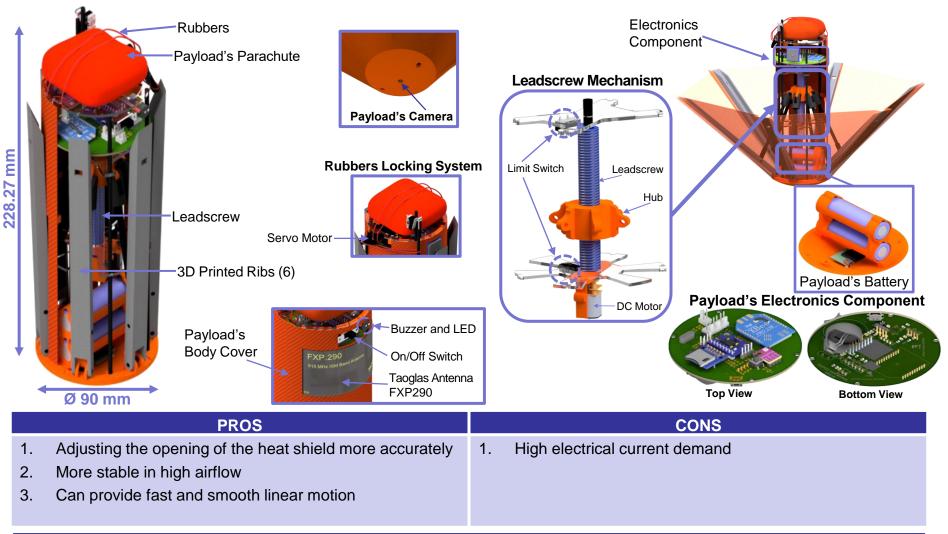
Container Material Trade Selection (2/2)


Material	Density (kg/m³)	Durability (MPa)	Strength	Permeability (cc/cm²/sec)	Cost (\$)	
Ripstop Nylon	1140	126.72	High	0.02	1.39	
Plastic HDPE	961	38.0	Medium	1.741	0.99	
Polyester	1200	129	High	175	9.33	

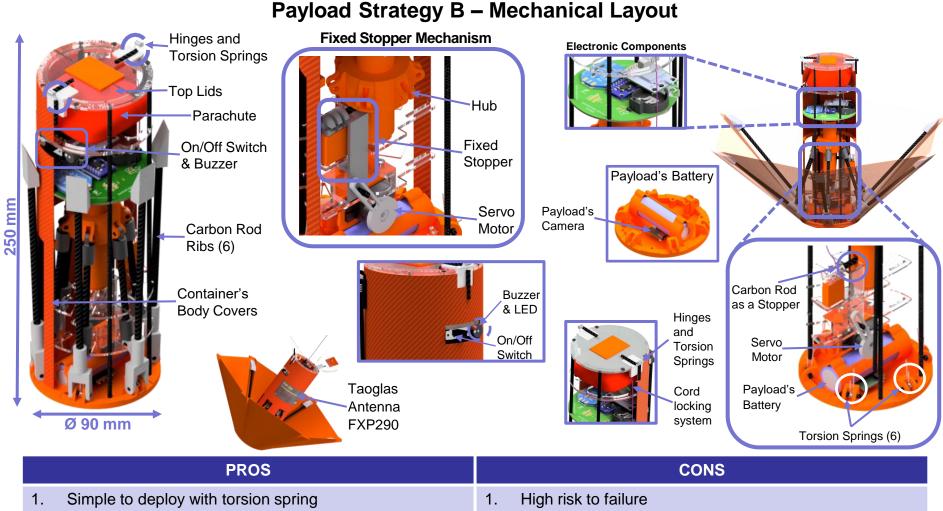
Parachute Material


Selected Material	Reasons		
Ripstop Nylon √	 Light material High strength More durable Low moisture absorbency Affordable 		

Before Deployment Container Parachute

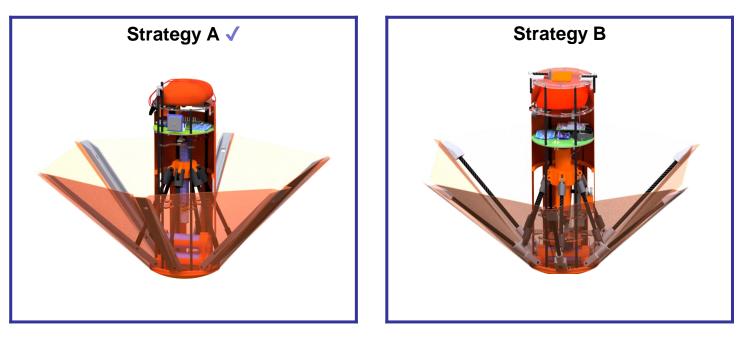

Information

- 1. The container's parachute is placed on the top of container at folded position
- 2. The cord of parachute keeps the parachute to maintain its folded position before release
- 3. The parachute will be opened by the air-resistance assist
- 4. The container's parachute will be attached by a swivel and eye bolt


Payload Mechanical Layout of Components Trade & Selection (1/6)

Payload Strategy A – Mechanical Layout

Payload Mechanical Layout of Components Trade & Selection (2/6)


2. Low power consumption

2. Not suitable for a high-speed descent

Payload Mechanical Selection "Selection"

Selected: Strategy A

Reasons

- 1. Higher stability
- 2. Easy to adjust the heat shield angle
- 3. Simpler mechanism

Payload Mechanical Layout of Components Trade & Selection (4/6)

Payload Material Trade Selection (1/3)

Payload Body Cover	Material	Density (g/cm ³)	Durability (MPa)	Cost (\$)
Selected: Fiberglass	Fiberglass	2.53	300	10.00
Reasons: lightweight, high	PLA+	1.23	57.8	15.22
durability, sturdy	Crepe Paper Composite	0.56	87.5	1.18

Parachute Material	Material	Density (kg/m³)	Durability (MPa)	Strength	Permeability (cc/cm²/sec)	Cost (\$)
Selected: Ripstop Nylon Reasons: more durable, affordable, lightweight,	Ripstop Nylon	1140	126.72	High	0.02	1.39
high strength	Plastic HDPE	970	38.0	Medium	1.741	0.99
	Polyester	1200	129	High	175	9.33

Payload Material Trade Selection (2/3)

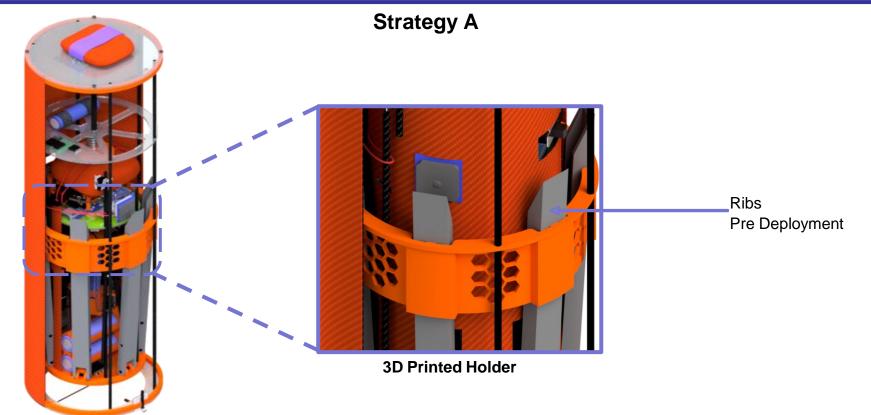
Heat Shield Coating Surfaces Material

Material	Density (kg/m³)	Durability (MPa)	Cost (\$)
Ripstop Nylon	1140	126.72	1.39
Plastic HDPE	970	38.0	0.99
Polyester	1200	129	9.33

Selected Material	Reasons	
Ripstop Nylon √	 Light material High strength More durable Low moisture absorbency Affordable 	

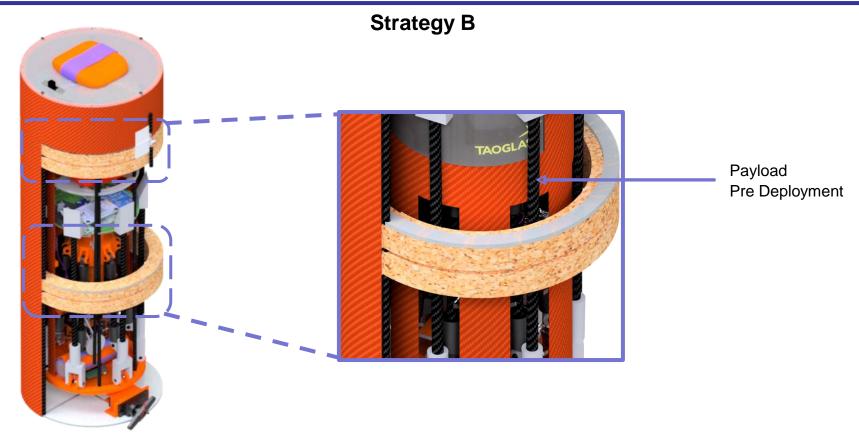
Payload Mechanical Layout of Components Trade & Selection (6/6)

Payload Material Trade Selection (3/3)


Part	Material	Density (kg/m³)	Durability (MPa)	Cost (\$)
Payload Frame	Acrylic	1.18	65.0	1.39
	PLA+	1.23	57.8	15.22
Payload Nose	ABS+	1.04	48.0	12.09
	PLA+	1.23	57.8	15.22
Heat Shield Ribs	ABS+	1.04	48.0	12.09
	Carbon Rod	1.5	300.0	6.0
Leadscrew	PLA+	1.23	57.8	15.22
	Teflon	2.2	20.0	10.0
	ABS+	1.04	48.0	12.09
DC Motor Brackets	PLA+	1.23	57.8	15.22
	ABS+	1.04	48.0	12.09

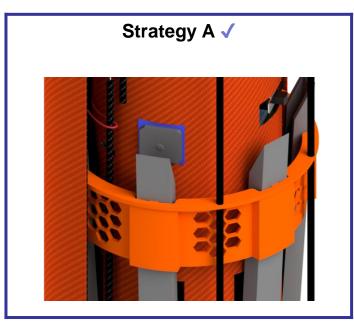
Selected	Payload Frame:	Payload Nose:	Heat Shield Ribs:	Leadscrew:	DC Motor Brackets
Material	Acrylic	ABS+	ABS+	Teflon	ABS+
Reason	Higher durabilityCheapest	Strong materialEasy to shapeCheapest	Easy to shapeLighter	Smoother surfaceCheapest	Strong materialHeat resistantCheapest

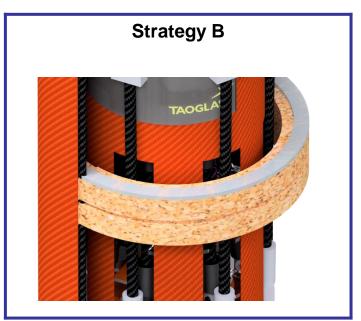
Payload Aerobraking Pre Deployment Configuration Trade & Selection (1/3)


Information

- 1. The 3D printed holder will be made of ABS+
- 2. Holder is used to reduce the shock and prevent shifting while the payload is stowed
- 3. The holder has a shape that matches with the payload shape
- 4. In the pre-payload deployment condition, the ribs will hook onto the holder to lock the payload into position

Payload Aerobraking Pre Deployment Configuration Trade & Selection (2/3)

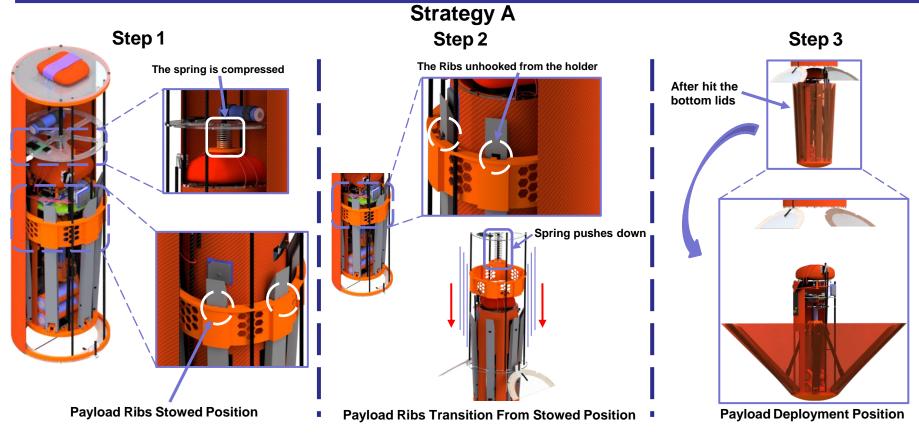

Information


- 1. This strategy is using corks as protective material for the payload during stowed in the container
- 2. The corks are not flammable and not crumbled easily
- 3. Corks has a fairly lightweight

Payload Aerobraking Pre Deployment Configuration Trade & Selection (3/3)

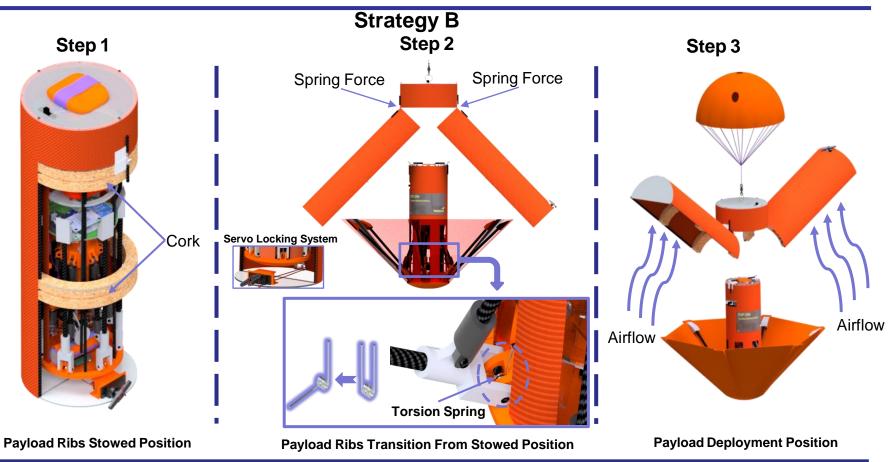
Payload Aerobraking Pre Deployment "Selection"

Selected: Strategy A


Reasons

- 1. The 3D printed holder can keep the heat shield is stowed while in the container
- 2. Cork is more difficult to attach inside the container
- 3. Easy to manufacture advanced shape

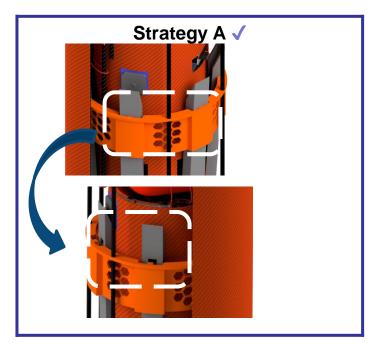
Payload Aerobraking Deployment Configuration Trade & Selection (1/3)

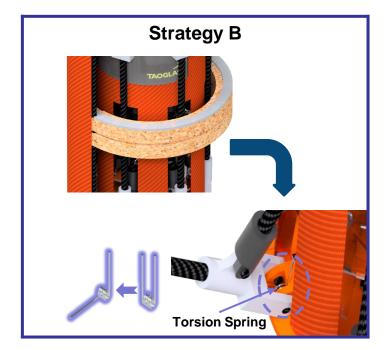


Information

The payload will be released when the heat shield ribs unhooks from the 3D printed holder with DC motor and leadscrew mechanism. After the ribs is unhooked from the holder, the spring in the container will push the payload out from the container.

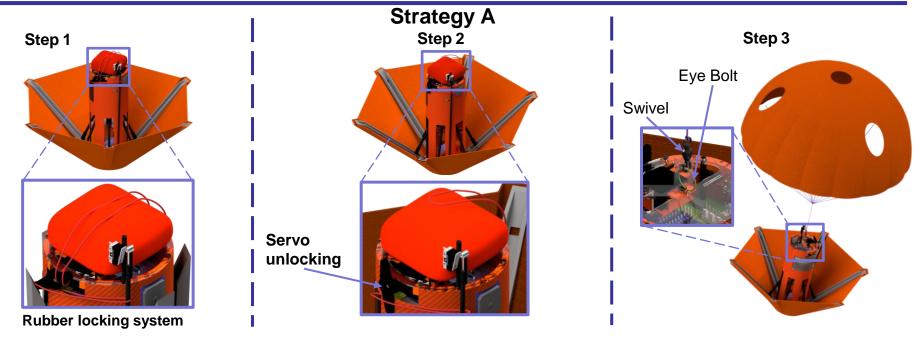
Payload Aerobraking Deployment Configuration Trade & Selection (2/3)


Information


The container's body will open if the servo is unlocked, the spring pulls the body covers, and airflow pushes the body covers to the top. After the container's body is opened, the payload's heat shield ribs will be deployed by torsion springs to open a heat shield.

Payload Aerobraking Deployment Configuration Trade & Selection (3/3)

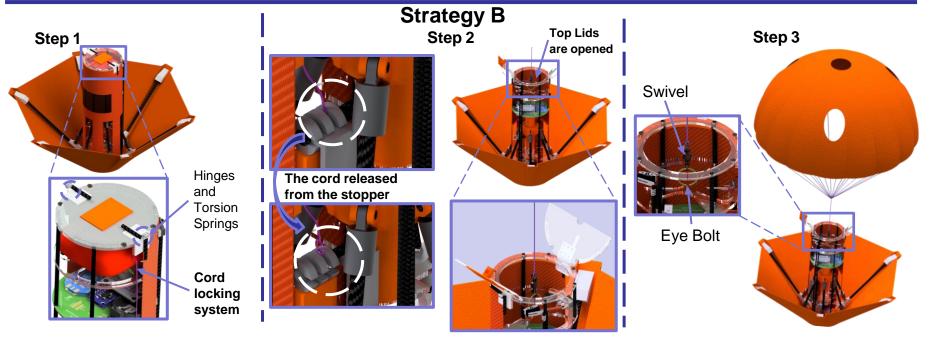
Payload Aerobraking Deployment "Selection"


Selected: Strategy A

Information

- 1. The 3D printed holder can keep the body of the container rigid and stable
- 2. Repulsion from the torsion springs have a risk to stuck in the container's body

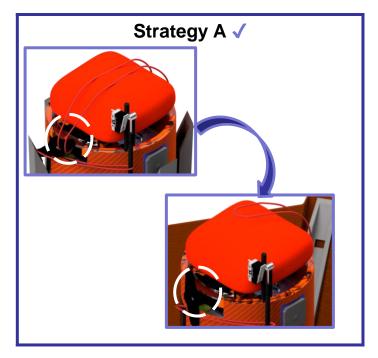
Payload Parachute Deployment Configuration Trade & Selection (1/3)


Information	
Step 1	The payload parachute is placed on the top frame of the payload in a folded position and is attached by an eye bolt to the payload. The eye bolt is attached to the parachute frame and hard-glued. The rubber keeps the payload parachute on the top frame before release. The payload parachute is connected to the eye bolt with a swivel as a connector
Step 2	At 200 m, servo actives and the rubber will be released
Step 3	After the rubber is released, the payload parachute deployed from the payload

EEPISAT

Payload Parachute Deployment Configuration Trade & Selection (2/3)

EEPISAT


Information	
Step 1	The payload parachute is placed between top lid and parachute frame of the payload in folded position and attached by an eye bolt to payload. The eye bolt is attached to parachute frame and hard-glued. The top lid kept the payload parachute inside of the payload before release because it is held by cord connected with the slider. The payload parachute is connected to the eye bolt with swivel as a connector
Step 2	At 200 m, servo actives to move the stopper to remove the strap from the slider that opens the top lid
Step 3	After the top lid is opened, the payload parachute deployed from the payload

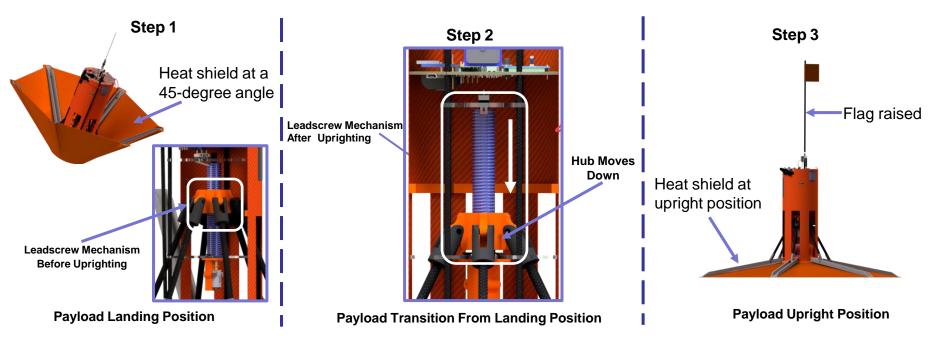
Payload Parachute Deployment Configuration Trade & Selection (3/3)

Payload Parachute Deployment "Selection"

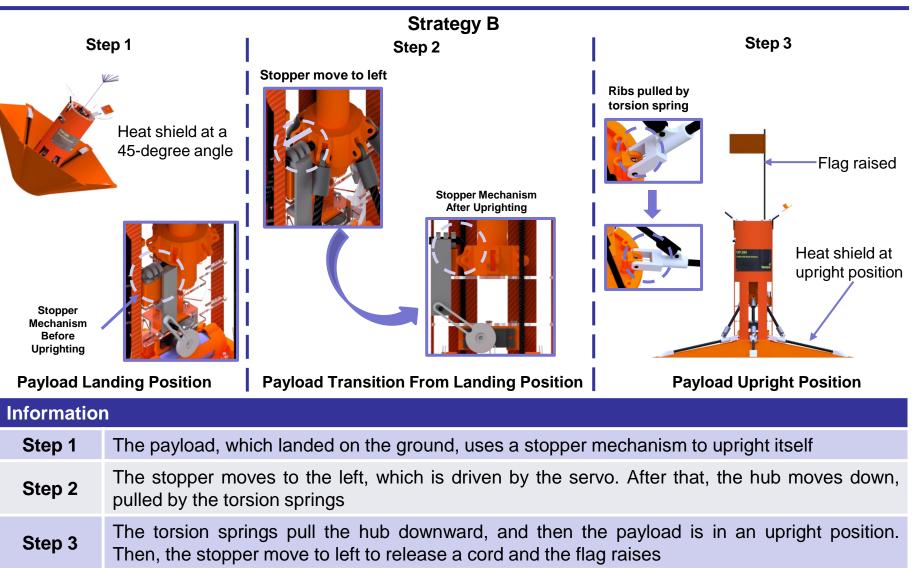
Strategy B

Selected: Strategy A

Reasons

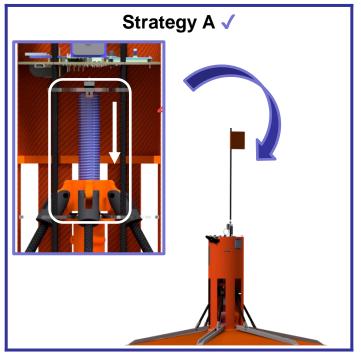

- 1. Simpler deployment mechanism
- 2. Feasible
- 3. Easy to build

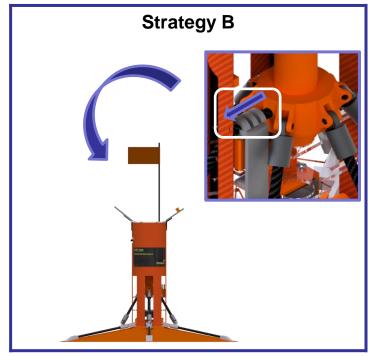
Payload Uprighting Configuration Trade & Selection (1/3)


Strategy A

Information						
Step 1	The payload, which landed on the ground, uses a leadscrew mechanism to upright itself					
Step 2	The leadscrew rotates to move the hub downward to adjust the heat shield ribs to upright position					
Step 3	After the hub is moved downward, the payload is in an upright position. Then, the servo is activated to release a cord that raises the flag					

Payload Uprighting Configuration Trade & Selection (2/3)

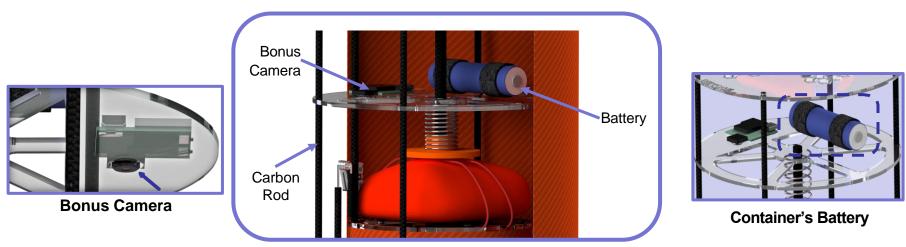




Payload Uprighting Configuration Trade & Selection (3/3)

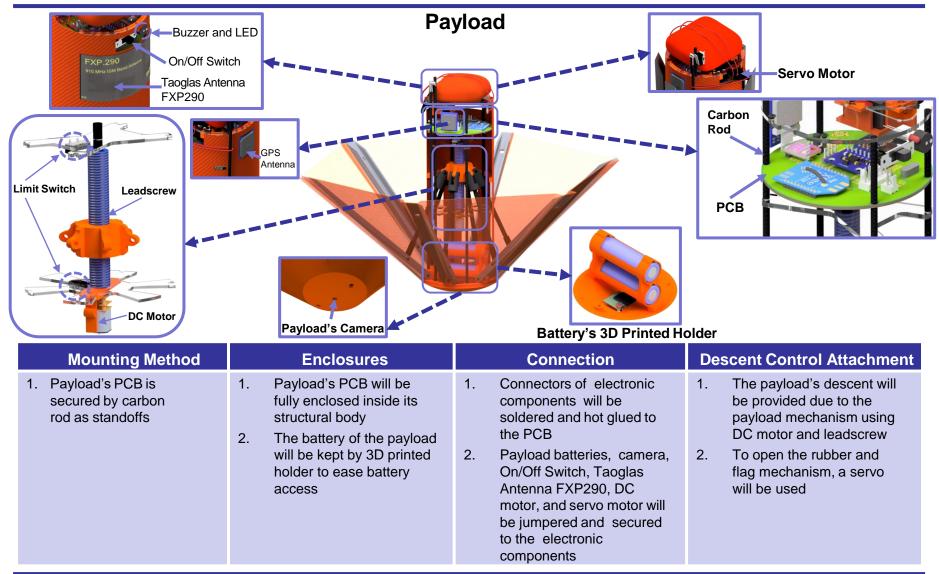
Payload Upright Strategy "Selection"

Selected: Strategy A


Reasons

- 1. Most likely to be succeed
- 2. This strategy is simpler to upright the payload

Container


Electronics Component

Mounting Method Enclosures		Connection	Descent Control Attachment	
 Container's battery is mounted using battery strap 	1. The battery of the container and bonus camera is fully enclosed inside its structural body	 Bonus camera will be jumpered and secured to the battery 	 The descent rate of the container will be provided by the parachute connected to the swivel 	

EEPISAT

Electronics Structural Integrity (2/2)

Mass Budget (1/4)

Container-Electrical Component							
Component	Quantity	Determination	Mass Unit (g)	Mass (g)	Margins (g)		
Soshine 14500 Battery	1	Measured	21	21			
Quelima SQ11	1	Estimated	15	15	3		
Total Mass Electrical Component of Con	tainer			36	3		
	Conta	iner-Structural Comp	oonent				
Component	Quantity	Determination	Mass Unit (g)	Mass (g)	Margins (g)		
Top Frame	1	Measured	27.2	27.2			
Bottom Lid Frame	1	Measured	7.5	7.5			
Bottom Lid	2	Measured	13.6	27.2			
Spring Holder Frame	1	Measured	10	10			
Carbon Rod 396 mm	8	Measured	4.2	33.6			
Hinges	2	Measured	0.6	1.2			
Parachute	1	Measured	6	6			
Container's Body Cover	2	Estimated	23.87	47.74	9.54		
3D Printed Holder	1	Measured	22.6	22.6			
Torsion Spring	2	Measured	0.3	0.6			
Compression Spring	1	Estimated	3.7	3.7	0.74		
Bolt	8	Estimated	0.1	0.8	0.16		
Spring Shoe	1	Measured	3.96	3.96			
Total Mass Structural Component of Co	ntainer			192.1	10.44		

Note: Due to the complexity of overall system, mass estimation is derived from the 20% of its estimated value.

Mass Budget (2/4)

Payload-Electrical Component							
Component	Quantity	Determination	Mass Unit (g)	Mass (g)	Margins (g)		
Olight 18650 Battery	2	Measured	50.0	100.0			
STM32F407VGT6	1	Estimated	2.0	2.0	0.4		
MG90 Servo Motor	1	Measured	14.6	14.6			
MPU 6050	1	Measured	1.6	1.6			
XBEE Pro S3B	1	Measured	6.4	6.4			
BN-220	1	Measured	5.6	5.6			
BME280	1	Measured	1.0	1.0			
Taoglas Antenna FXP290	1	Measured	1.5	1.5			
Buzzer	1	Measured	5.0	5.0			
DC Motor	1	Datasheet	10.0	10.0			
On/Off Switch	1	Measured	1.6	1.6			
Limit Switch	3	Measured	0.5	1.5			
Quelima SQ11	1	Estimated	15.0	15.0	3		
PCB	1	Estimated	8.1	8.1	1.62		
SD Card Module	1	Measured	1.5	1.5			
3 mm LED	1	Measured	0.4	0.4			
Driver Motor MX1508	1	Datasheet	2.2	2.2			
Coin Cell Battery	1	Measured	4	4			
Total Mass Electrical Component of Payl	Total Mass Electrical Component of Payload 182 5.02						

Note: Due to the complexity of overall system, mass estimation is derived from the 20% of its estimated value.

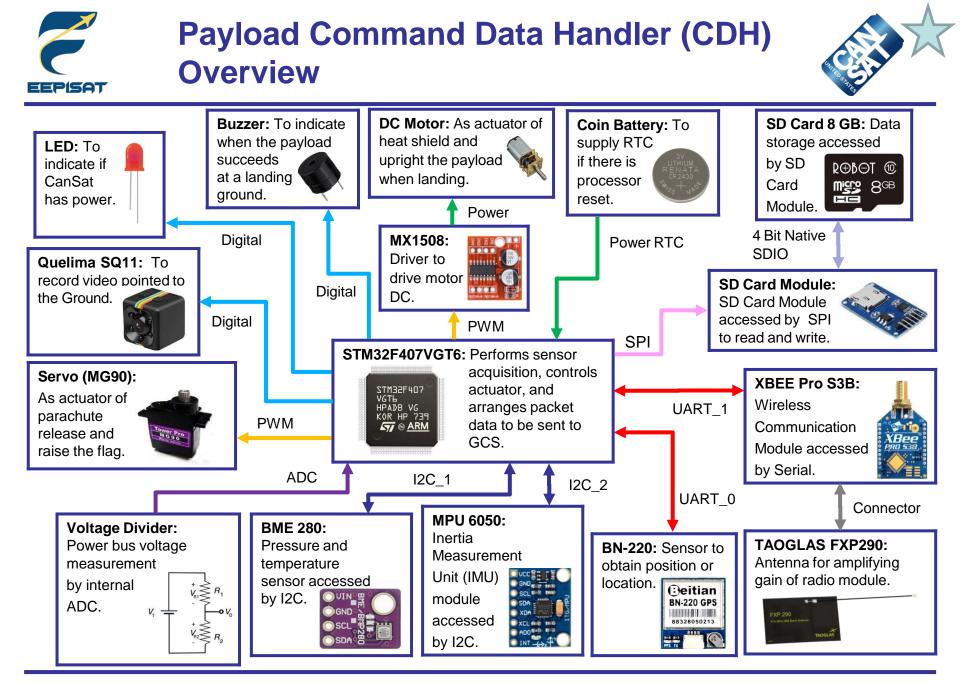
Mass Budget (3/4)

Payload-Structural Component						
Component	Quantity	Determination	Mass Unit (g)	Mass (g)	Margins (g)	
Payload's Body Cover	2	Estimated	12.85	25.7	5.14	
Carbon Rod 228 mm	4	Measured	2.41	9.64		
Parachute Frame	1	Measured	5.6	5.6		
Rubber	2	Estimated	6.3	12.6	2.52	
Payload Middle-top frame	1	Measured	4	4		
Payload Middle-bottom frame	1	Measured	5	5		
Payload's Nose	1	Measured	27	27		
Leadscrew	1	Estimated	20	20	4	
Hub	1	Measured	7.1	7.1		
Parachute	1	Measured	37	37		
Ribs Assembly	6	Measured	16.28	97.68		
Heat Shield	1	Estimated	20	20	4	
DC Motor Bracket	1	Estimated	3	3	0.6	
Torsion Spring	1	Measured	0.3	0.3		
Carbon Rod 250 mm (Flagpole)	1	Measured	2.65	2.65		
Flag	1	Estimated	3	3	0.6	
Battery Holder	1	Measured	7	7		
Bolt	11	Estimated	0.1	1.1	0.22	
Servo Holder	1	Measured	3	3		
Total Mass Structural Component of Payload 291.37 17.08						

Note: Due to the complexity of overall system, mass estimation is derived from the 20% of its estimated value.

RN 1: Total mass of the CanSat (science payload and container) shall be 700 grams ±10 grams

Total Mass					
Container	228.1 ± 13.44 g				
Payload	473.37 ± 22.10 g				
Total Mass of All System	701.47 ± 35.54 g				


Margin					
Mass Competition Requirement – Total Mass of All System = Margin 700 – 701.47 = -1.47 g (Fulfill Mass Tolerance) Uncertainties = ± 35.54 g					
Correction Method (Mai	gin Competition ± 10 g)				
If total mass system < 690 grams	We will increase the mass of materials using higher infill density of 3D printed material for container or payload.				
If total mass system > 710 grams We will change the material with lighter material such as composite that has lower density for container and payload.					

Communication and Data Handling (CDH) Subsystem Design

Achmad Bagus Okto Faerizqi

Presenter: Achmad Bagus Okto Faerizqi

Payload Processor & Memory Trade & Selection (1/2)

Model	Boot Time (s)	Processor Speed (MHz)	Operating Voltage (V)	Data Interfaces (Types & Numbers)		Memory Storage	Cost (\$)
STM32F407VGT6 Minimum System	0.001	164	3.3 – 5	Digital Pin (82) PWM Pin (12)	Serial Pin (6) SPI Pin (3) I2C Pin (3)	EEPROM 4Kb Flash 8Mb RAM 1024Kb	15.00
Teensy 4.0	0.005	600	3.3 – 5	Digital Pin (40) PWM Pin (31)	Serial Pin (7) SPI Pin (3) I2C Pin (3)	EEPROM 1Kb Flash 2Mb RAM 1024Kb	19.95
Teensy 3.6	0.005	180	3.3 – 5	Digital Pin (62) PWM Pin (22)	Serial Pin (6) SPI Pin (3) I2C Pin (4)	EEPROM 4Kb Flash 1Mb RAM 256Kb	29.25

Selected Processor	Reasons	
Weight: 1.4 g 14 mm 14 mm 14 mm 14 mm 14 mm 14 mm	 Fast boot time Cheapest It's a powerful microcontroller with many GPIOs It's smaller and can be assembled to a customized minimum system 	

Payload Processor & Memory Trade & Selection (2/2)

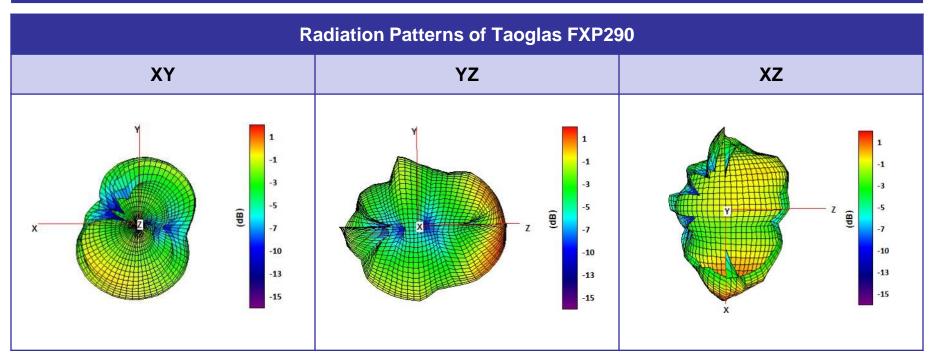
Model		Interfece	Data Trans		
Wodel	Memory (GB)	Interface	Write (MB/s)	Read (MB/s)	Cost (\$)
Samsung EVO	16	SD Card Interface	20	80	6.95
ROBOT Micro SD	8	SD Card Interface	45	45	3.22
VGEN SD Card Hyper	16	SD Card Interface	90	100	6.79

Selected Memory	Reasons
ROBOT Micro SD ✓	 Stable data transfer rate More reliable and easy to use It has a great performance Cheapest

Payload Real-Time Clock

Model	Operating Voltage (V)	Operating Current	Reset Tolerance	Accuracy (ppm)	Cost (\$)
Built-in STM32F407VGT6	3.3	Built-in	In reset conditions, the software reads the last data from the RTC register value	± 20	0
DS-1307	3.3	1.5 mA	In reset conditions external clock continues to keep time	± 23	1.2
DS-3231	3.3	300 µA	In reset conditions external clock continues to keep time	± 3.5	1.56

Selected RTC	Reasons
0 0	 Minimize board size because it's included in STM32F407VGT6 No cost (included in STM32F407VGT6) Easy to use


Payload-to-Ground link

Model	Range (km)	Frequency (MHz)	Gain (dBi)	Connector	Size (mm)	Cost (\$)
Taoglas FXP290	11.67	915	1.5	Micro FL	75.4 x 45.4	17.05
Digi A09- HASM-675	12.85	915	2.1	RP-SMA	175 x 10	31.03
Noyito Antenna	14.48	915	5	SMA	204 x 13	36.19

Selected Antenna	Reasons
Taoglas FXP290 ✓	 Can be placed to XBEE using a small micro FL Lightweight and small Affordable

* The antenna is located at payload's body

Payload-to-Ground XBEE Radio Selection

Model	Range (km)	Sensitivity (dBm)	Receive Current (mA)	Transmit Current (mA)	Supply Voltage (V)	Frequency	Cost (\$)
XBEE Pro S3B	14	-107	26	215	3.0 - 3.6	915 MHz	57.52
XBEE Pro S2C	3.2	-101	31	120	2.1 – 3.6	2.4 GHz	50.02
XBEE Pro S1	1.6	-100	55	215	2.8 - 3.4	2.4 GHz	58.40

Selected Radio	Reasons
XBEE Pro S3B ✓	 Highest sensitivity Better range than other XBEE We have experience working with this radio module

Overview of Radio Configuration

- As presented in the slide above we are using one "XBEE Pro S3B" for radio communication device from payload to GCS
- We are using NETID 1085 because our team ID is 1085

Transmission Control

- 1. The payload telemetry data will be transmitted to the GCS @1Hz
- 2. The payload will start sending data when commanded by GCS using command "CMD,1085,CX,ON"
- 3. The transmission of payload packet data will commence at the payload's LAUNCH_WAIT state. Before LAUNCH_WAIT state, the payload remains idle
- 4. When the CanSat landed, the payload will stop sending data to the GCS
- 5. If somehow the STM32F407VGT6 runs into reset, it will recover the last packet count from SD Card, so the packet counting doesn't reset

		Payload Telemetry Data
Data Format	Sample Data	Description
<team_id></team_id>	1085	The assigned team identification number. Our team ID is 1085
<mission_time></mission_time>	00:09:02.22	UTC time in format hh:mm:ss.ss, where hh is hours, mm is minutes, and ss.ss is seconds (including hundredth of second)
<packet_count></packet_count>	12	The total count of transmitted packets since turn on, which is to be reset to zero by command when the CanSat is installed in the rocket on the launch pad at the beginning of the mission and maintained through processor reset
<mode></mode>	F	The ASCII character 'F' for flight (the default mode upon system start) and 'S' for simulation
<state></state>	LAUNCH_WAIT	The operating state of the payload
<altitude></altitude>	100.1	The payload altitude in units of meters and must be relative to ground level. The resolution must be 0.1 meters
<hs_deployed></hs_deployed>	Р	The ASCII character 'P' indicates the payload with heat shield deployed, 'N' otherwise
<pc_delployed></pc_delployed>	С	The ASCII character 'C' indicates the payload parachute is deployed (at 200m), 'N' otherwise
<mast_raised></mast_raised>	М	The ASCII character 'M' indicates the flag mast has been raised after landing, 'N' otherwise
<temperature></temperature>	28.9	The payload temperature in units degrees Celsius. The resolution must be 0.1 degrees C
<voltage></voltage>	3.1	The payload power bus voltage in units volts. The resolution must be 0.1 V $$

Payload Telemetry Format (2/2)

	-	Payload Telemetry Data
Data Format	Sample Data	Description
<pre><pressure></pressure></pre>	100.1	The payload air pressure of the sensor used in units kPa. The resolution must be 0.1 kPa
<gps_time></gps_time>	00:09:02	The time generated by the GPS receiver. The time must be reported in UTC and have a resolution of a second
<gps_altitude></gps_altitude>	100.2	The altitude generated by the GPS receiver in meters above mean sea level with a resolution of 0.1 meters
<gps_latitude></gps_latitude>	17.0199	The latitude generated by the GPS receiver in decimal degrees with a resolution of 0.0001 degrees North
<gps_longitude></gps_longitude>	189.0077	The longitude generated by the GPS receiver in decimal degrees with a resolution of 0.0001 degrees West
<gps_sats></gps_sats>	5	The number of GPS satellites being tracked by the GPS receiver. This must be an integer number
<tilt_x, TILT_Y></tilt_x, 	1.12, 2.12	The angle of the CanSat X and Y axes in degrees, with a resolution of 0.01 degrees, where zero degrees is defined as when the axes are perpendicular to the Z axis which is defined as towards the center of gravity of the Earth
<cmd_echo></cmd_echo>	CXON	The fixed text command id and argument of the last received command with no commas
<checksum></checksum>	"""	Commas are used to ensure that data sent to GCS is valid, if there is a data error then GCS will know about it
Pavload Data Format will	be transmitted @1 H	z to the GCS

Payload Data Format will be transmitted @1 Hz to the GCS 1085,15:00:10.01,100,F,LAUNCH_WAIT,100.1,P,C,M,30.0,100.1,3.1,00:09:02,100.2,17.0199,189.0077,7,1.12,2.12,CXON,

Payload Command Formats (1/2)

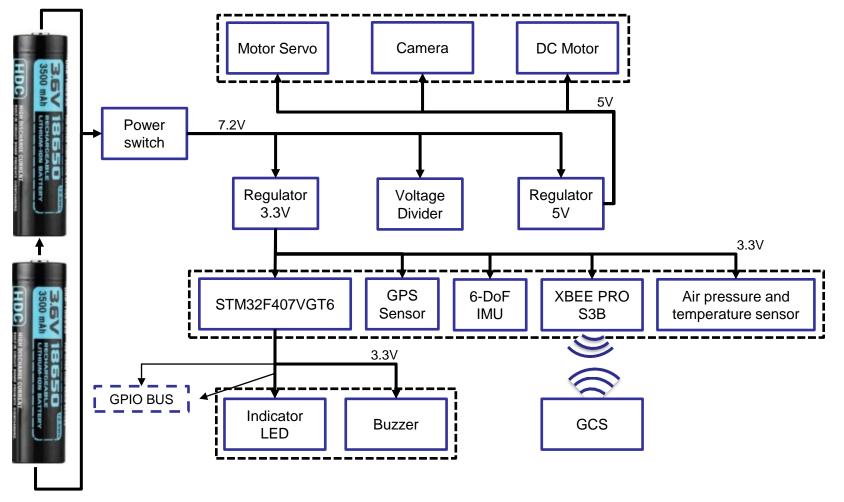
Type of Command	Command Format	Description	Example Data
ST: Set Time	CMD, <team_id>, ST, <utc_time></utc_time></team_id>	 CMD and ST are static text <team id=""> is the assigned team identification</team> <utc_time> is UTC time in the format hh:mm:ss</utc_time> 	The command CMD,1085, ST,13:50:02 sets the mission time to the value given
SIM: Simulation Mode Control Command	CMD, <team_id>, SIM, <mode></mode></team_id>	 CMD and SIM are static text <team_id> is the assigned team identification</team_id> <mode> is the string 'ENABLE' to enable the simulation mode, 'ACTIVATE' to activate the simulation mode, or 'DISABLE' which both disables and deactivates the simulation mode</mode> 	Both the CMD,1085,SIM,ENABLE and CMD,1085,SIM,ACTIVATE commands are required to begin simulation mode
CX: Payload Transmission On/Off	CMD, <team_id>, CX, <on_off></on_off></team_id>	 CMD is static text CX are static text indicating to control telemetry for payload <team id=""> is the assigned team identification</team> <on_off> is the string 'ON' to activate the science payload transmissions and 'OFF' to turn off the transmissions</on_off> 	CMD,1085,CX,ON will trigger the payload to begin telemetry transmissions. CMD,1085,CX,OFF will trigger the payload to stop telemetry transmissions

Payload Command Formats (2/2)

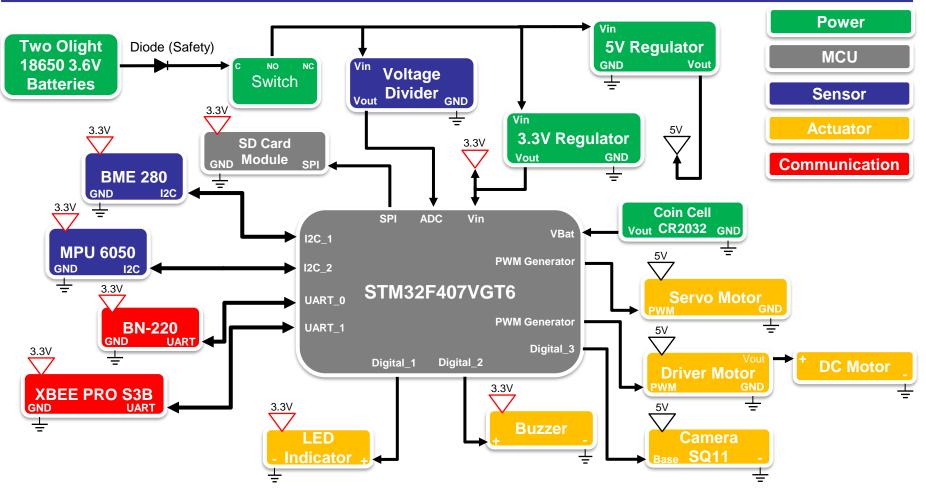
Type of Command	Command Format	Description	Example Data
SIMP: Simulated Pressure Data (to be used in Simulation Mode only)	CMD, <team_id>, SIMP, <pressure></pressure></team_id>	 For testing purpose only CMD and SIMP are static text <team id=""> is the assigned team identification</team> <pressure> is the simulated atmospheric pressure data in units of pascals with a resolution of one pascal</pressure> 	CMD,1085,SIMP,101325 provides a simulated pressure reading to the payload (101325 Pascals = approximately sea level) Note : only in simulation mode
CAL: Payload reset and calibration	CMD, <team_id>, CAL</team_id>	 CMD and CAL are static text <team id=""> is the assigned team identification</team> 	CMD,1085,CAL will reset the microcontroller on payload to set new mission reference

Electrical Power Subsystem (EPS) Design

Achmad Bagus Okto Faerizqi


EPS Overview (1/2)

Component	Purpose
Power	 All components in the payload are powered by two Olight 18650 3.6V batteries connected series The total voltage is 7.2V Real-Time Clock (RTC) power is provided by a 3V coin battery The payload will be reset and power connected and disconnected using an external on/off switch All of the sensors and the XBEE in the payload are powered by the 3.3V regulator
MCU	 STM32F407VGT6 will operate all actuators and collect all sensor data. It will be supplied by 3.3V output from the regulator SD Card will save all sensor data RTC will keep mission time in case of a sudden reset
Sensors	 BME280 will collect temperature and pressure data. It will be supplied by 3.3V from the voltage regulator The MPU6050 will collect orientation data. It will be supplied by 3.3V from the voltage regulator The voltage divider will take battery voltage data. It will be connected to 7.2V from the batteries
Actuators	 The heat shield will be opened using a DC motor. It will receive 5V as power from the voltage regulator The camera will be used to record terrain. It will be supplied by 5V from the voltage regulator The LED indicator will turn on to show that the system is active. It will receive 3.3V from a GPIO pin as power The servo will be used to deploy the parachute and the flag. It will be supplied by 5V from the voltage regulator
Communications	Data will be sent and received from the GCS by XBEE Pro S3B. The voltage regulator will provide 3.3V to power it



Two Olight 18650 3.6V batteries connected series

Payload Electrical Block Diagram

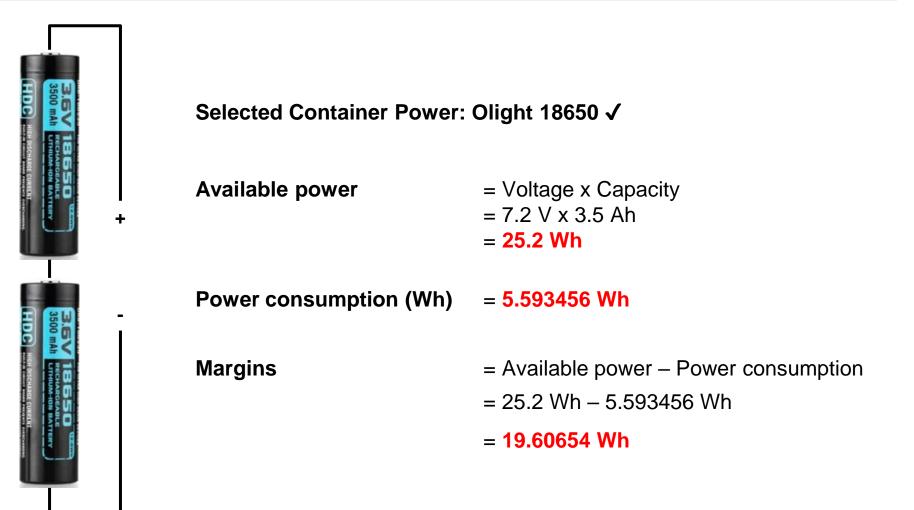
- The electronics system will be easily turned on/off by a switch
- The buzzer beeps and the LED blinks when the system is powered on
- A cell coin battery is used to supply the internal RTC in the MCU

Payload Power Trade & Selection

Model	Pottory Type	Voltage	Weight	Nominal Capacity (mAh)	Maximum Discharge Current	Dimension (mm)		
Model	Battery Type	(V)	(g)			Height	Diameter	Cost (\$)
OLIGHT 18650	Lithium Ion	3.6	48.27	3500	10.000	69.8	18.5	25.13
Toshiba ER6V	SOCl ₂	3.6	48.5	2000	3500	65.3	18.5	6
Samsung INR18650-25R	Lithium Ion	3.6	45	2500	4000	65	18	4.99

Two battery will in series to all components

Selected Battery		Reasons				
	OLIGHT 18650 √	 Provide the payload with enough power to run for 2 hours High discharge current High capacity 	+ Olight - + Olight -	Direct 7.2V 3.3V 5V Regulator Regulator		
			t	Electrical Components		


Payload Power Budget (1/2)

Component	Quantity	Source	Current (mA)	Voltage (V)	Duty Cycles in 1 Hour (%)	Power Consumption (Wh)
STM32F407VGT6 (include RTC)	1	Datasheet	50	3.3	100	0.165
XBEE Pro S3B	1	Datasheet	215	3.3	100	0.7095
BME280	1	Estimated	1.064	3.3	100	0.0035112
MPU6050	1	Datasheet	12.3	3.3	50	0.020295
Servo MG90	1	Measured	250	5	50	0.625
DC Motor	1	Measured	180	5	50	0.45
SD Card Module	1	Datasheet	20	3.3	50	0.033
SQ11 – Camera	1	Measured	80	5	50	0.2
LED	1	Estimated	30	3.3	100	0.099
Buzzer 95 dB	1	Datasheet	80	3.3	100	0.264
Voltage Divider	1	Estimated	0.878	7.2	100	0.0063216
BN-220	1	Measured	67	3.3	100	0.2211
Total					2.796728	
Consumption for 2 Hours					5.593456	

Flight Software (FSW) Design

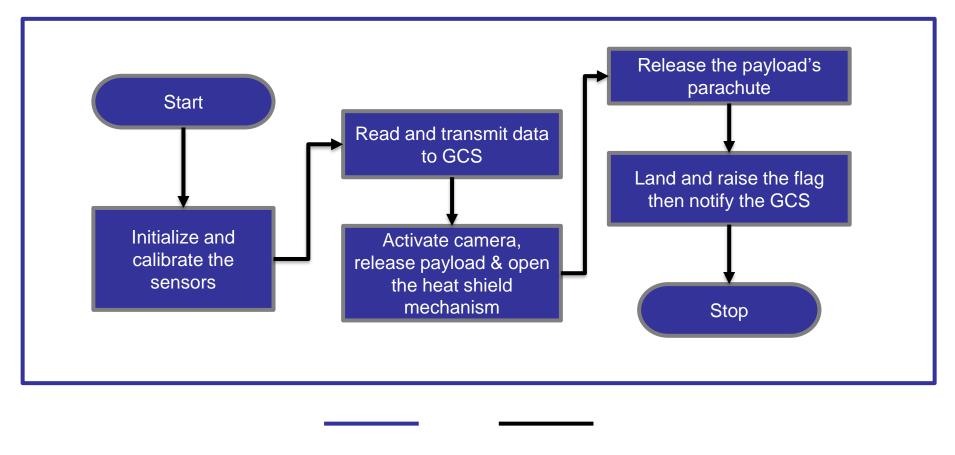
Muhammad Tsaqif Mukhayyar

FSW Overview (1/3)

CanSat FSW Tasks

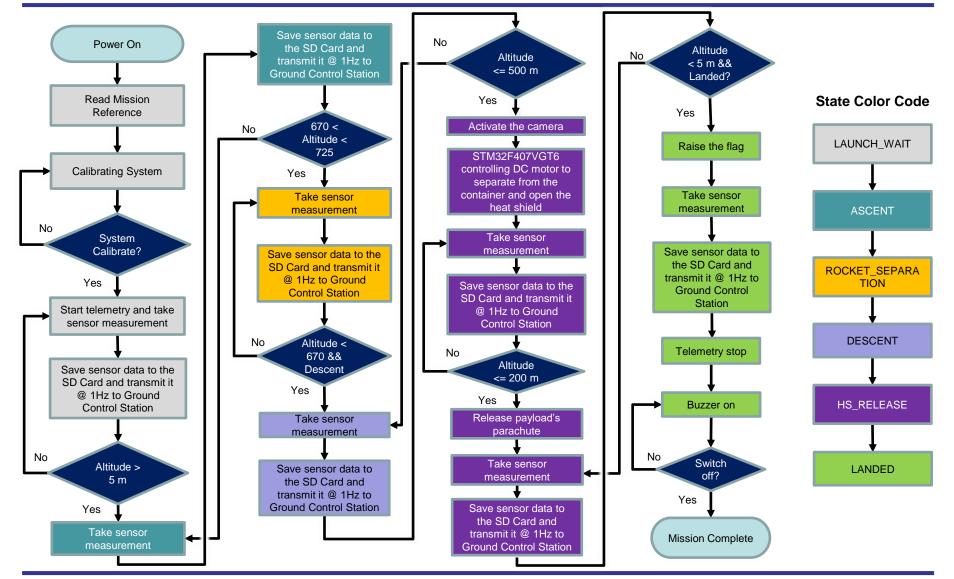
CanSat will collect data from sensors and transmit the data to GCS during ascent until it land. At 500 m, the CanSat will release a payload and then activate the heat shield mechanism in the payload. When the payload reaches 200 m, the payload will deploy a parachute. Once the payload has landed, it will raise a flag using the servo mechanism. The SD Card is used to back up the data and store the video on the container and payload.

A video camera will be added to the payload and pointed toward the ground. The bonus video camera will be added to the container to record and show the separation of the payload.


	Programming Languages	Development Environments
•	C/C++	 Arduino IDE STM32CubeIDE XCTU RealTerm

CanSat FSW Architecture

Payload Next Flow


Payload FSW Tasks

- 1. The payload will set the new mission reference when receiving **CAL** from the GCS and save calibration data to the SD Card
- 2. The payload FSW mode will read from SD Card on the STM32F407VGT6, the default mode is Flight mode, and when the payload receives commands **SIM ENABLE** and **SIM ACTIVATE** from the GCS, the payload will enter the simulation mode
- 3. When the payload enters the **ASCENT** state, the payload will collect the packet data and then save it to the SD Card, the payload packet data will be transmitted @1Hz to the ground station via XBEE Pro S3B
- 4. In 500 m the payload will deploy the heat shield and the **HS_DEPLOYED** indicator change into **P** from **N**
- 5. In 200 m the payload will deploy its parachute and the **PC_DEPLOYED** indicator change into **C** from **N**
- 6. When the state is **LANDED** the payload will raise a flag and **MAST_RAISED** indicator changed to **M** from **N**, and all telemetry data transmission will be stopped
- 7. The mission will be completed

Payload FSW State Diagram (1/3)

Presenter: Muhammad Tsaqif Mukhayyar

CanSat 2023 PDR: Team 1085 Bamantara EEPISAT

Mechanism Activations

At 500 m, STM32F407VGT6 will activate :

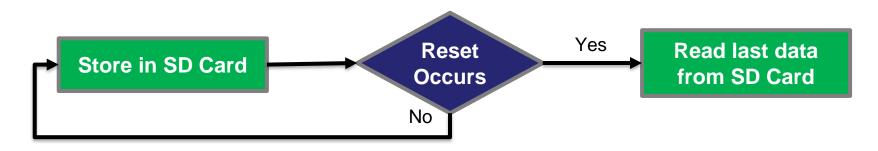
- The DC motor to control the payload to separate from container
- The DC motor to control the payload ribs to open heat shield
- The camera to record terrain

At 200 m, STM32F407VGT6 will activate :

• The servo to open rubber locking system to deploy payload's parachute.

At Landed, STM32F407VGT6 will activate :

- The servo to control the flag to raise
- The DC motor to control the payload to upright position


Major Decision Points in The Logic

The altitude will be the major decision parameter among other parameters used as consideration.

Data Storage		Sampling of Sensors	Communications		
•	Video and backup telemetry data will be stored on the SD Card SD Card is used for recovery after reset	The data sensor will be sampled at 1 Hz (1000ms).	Payload communicates using Taoglas FXP 290 and transmits data to the ground station. All commands will be included in CDH.		

Payload Data Recovery

STM32F407VGT6 will recover (stored in SD Card):

- Packet Count
- Last State
- Command Echo
- Reference Altitude

Reason for Reset

Temporary power loss occurs

Power Management

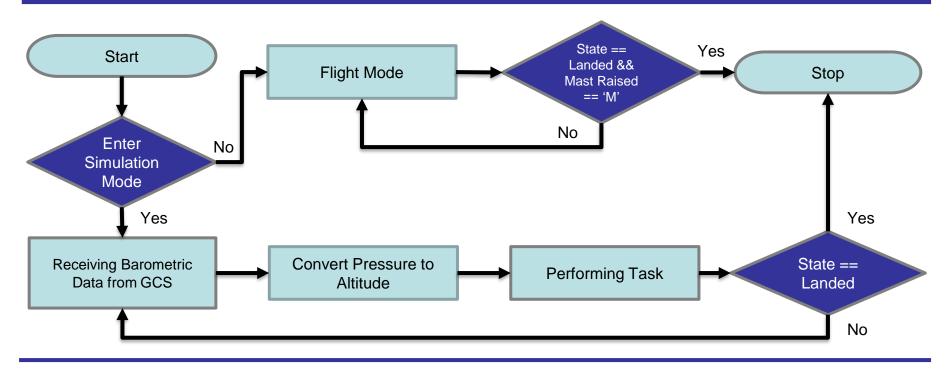
For two hours flight is enough with (2x) 3.6V OLIGHT 18650 3500 mAh batteries

Simulation Mode

- Simulation mode is for testing, pre-flight demonstration, and contingency, where launch operations are not possible. The telemetered pressure sensor data should reflect the commanded simulation values, not the actual sensor readings
- To activate the simulation mode, GCS must send SIM ENABLE followed by SIM ACTIVATE to the payload
- The values other than the pressure and altitude (calculated from the pressure values) will be actual sensor readings. The relayed payload telemetry will contain actual sensor values
- The barometric pressure data will be read by a .txt file in the GCS and transmitted value by the command to the payload at a rate of one data per second
- After the simulation mode is active, flight software will receive barometric pressure sensor command (SIMP) from GCS and use the received values as if they were actual barometric pressure readings in the calculation of altitude, and determination software state
- After GCS sends the **SIM DISABLE**, the flight software will switch to flight mode

Simulation Mode Commands

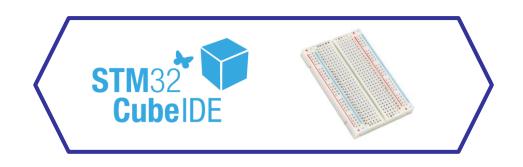
CMD,<TEAM_ID>,SIM,<MODE>


<MODE> consists of :

- 'ENABLE' to enable simulation mode;
- 'ACTIVATE' to activate simulation mode; or
- · 'DISABLE' to disable and deactivate simulation mode

CMD,<TEAM_ID>,SIMP,<PRESSURE>

This command provides a simulated pressure reading to the payload


Simulation Mode Flowchart

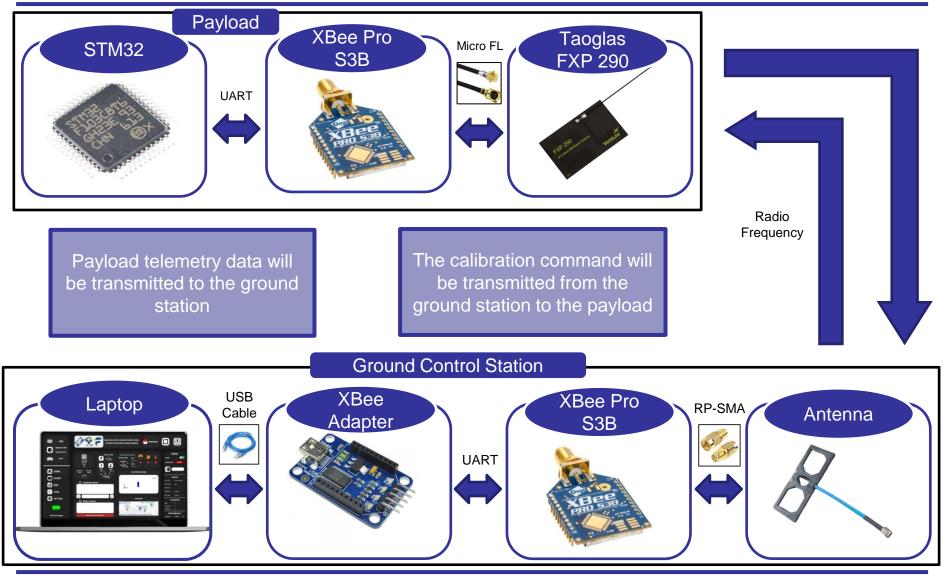
Prototyping procedure and prototyping environment							
Subject	Prototyping Environment	Prototyping Procedure					
STM32F407VGT6	STM32CubeIDE	Programming and debugging are done in STM32CubeIDE and the data will be monitored in RealTerm					
Sensors	Breadboard and PCB	Each sensor is tested on the breadboard separately					

	Test Methodology				
Subsystem	Development Sequence				
Sensors	 Sensor trade and selection - select the best sensors for our application Individual sensor programming - program payload sensor with STM32CubeIDE 				
State Mechanism	Integrate all sensors and test it in state mechanism				
XBee Telemetry	Testing GCS and payload communication – Configure and test all payload sensors data that will be transmitted to GCS				
Heat Shield Mechanism	Program the payload mechanism with DC motor to control the heat shield ribs				
Parachute Mechanism	Program the payload mechanism with servo to deploy the parachute				
Flag Mechanism	Program the payload mechanism with servo to raise the flag				
Integrate all	Integrate all software subsystem to ensure all system works well				
	Development Team				

- 1. Achmad Bagus Okto Faerizqi
- 2. Muhammad Tsaqif Mukhayyar

Test Methodology

- Necessary software is installed such as Arduino IDE and STM32Cube IDE to help the software development
- Telemetry software tests are simulated using XCTU
- Sensors and hardware were tested separately
- Test the state mechanism for the payload
- Test the system recovery for the payload
- Test the telemetry data and communication commands using hardware
- Test the flight mode software using GCS
- Test the simulation mode software using GCS
- Check whether the FSW meets the competition requirements
- Test integrated sensors and hardware according to the mission

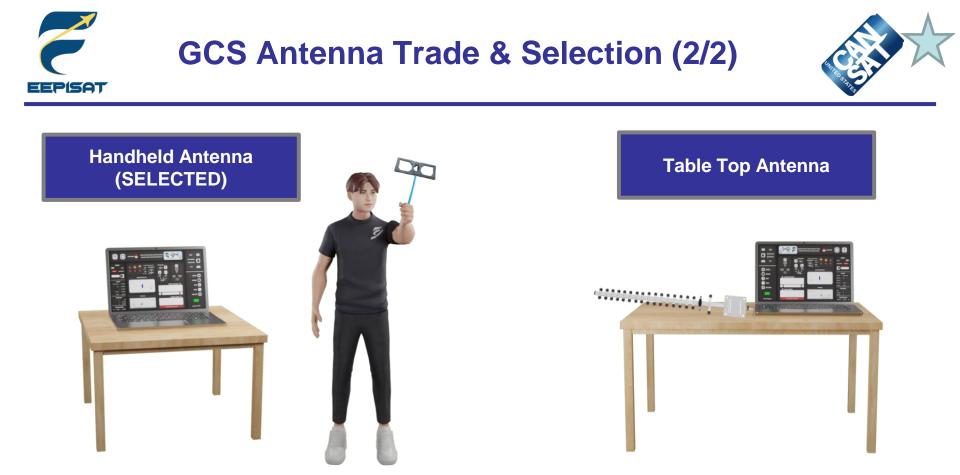

Ground Control System (GCS) Design

Muhammad Tsaqif Mukhayyar

GCS Overview

USB Cable

Specifications			
Battery	GCS Laptop can operate 2.5 hours on battery from fully charged		
Overheating Mitigation	There will be an external laptop cooling fan with power source from power bank and also an umbrella		
Auto Update Mitigation	Auto update and internet connection will be disabled before the launch		


GCS Antenna Trade & Selection (1/2)

	Frequency		Beamwidth				Antenna Pattern		
Model	Rate (MHz)	Gain (dBi)	(Horizontal/ Vertical)	Direction	Range (km)	Cost (\$)	Horizontal	Vertical	
ZIISOR LoRa DIRECTIONAL YAGI ANTENNA	915 MHz	12	32°/30°	Directional	~20	25.50			
Moxon Antenna	915 MHz	6.56	70°/85°	Directional	~11	10			

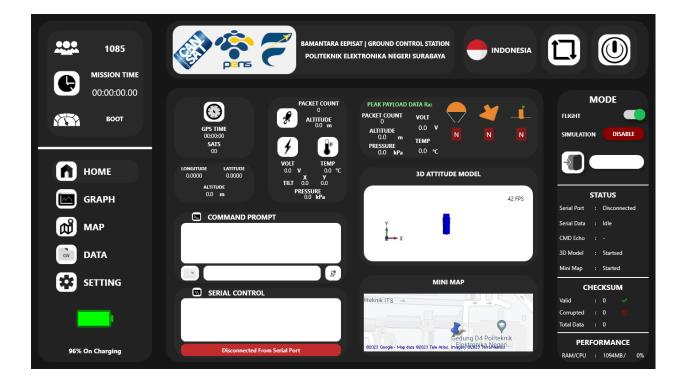
Selected Antenna	Reasons		
Moxon Antenna √	 It can be brought easily Easy to hold and cheaper than Yagi Antenna Wide range of beamwidth We have experience working with this antenna 		

Presenter: Muhammad Tsaqif Mukhayyar CanSat 2023 PDR:

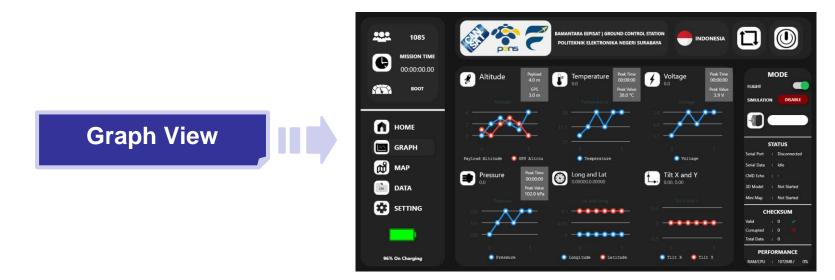
Selected Mounting Antenna Design: Handheld Antenna

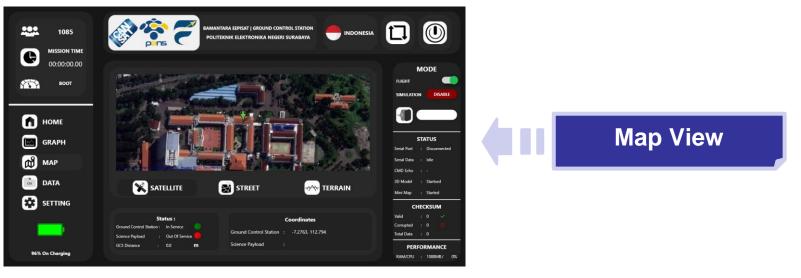
Reasons

The antenna will be held in the hand to facilitate targeting and reduce data loss because the payload's altitude will fluctuate.

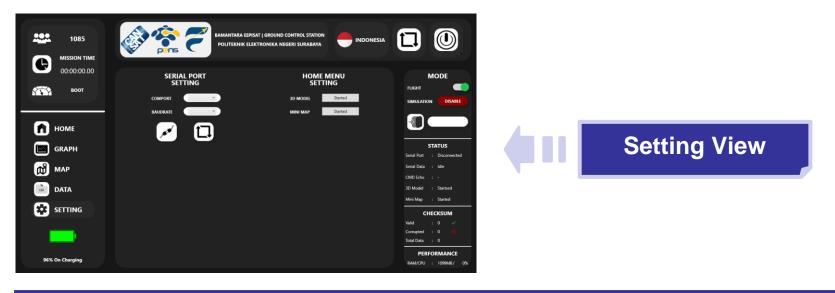

GCS Software (1/4)

Telemetry Display Prototypes	The ground control station will get real-time graphs, labels, map, 3D model and charts displaying the telemetry data collected from the payload
Commercial Off The Shelf (COTS) Software Packages Used	 Visual Studio 2022 Community Edition XCTU (XBee Program Software)
Real-Time Plotting Software Design The telemetry data received from the serial port will be transferred to the PC by USB connected and processed with C# using LiveCharts2.net and C# WPF library to display the telemetry in real-time and finally data will be saved in a .csv file	
Command Software And Interface There will be a command text box to command the payload to begin communicating telemetry data as well as to calibrate all of the telemetry data	
Telemetry Data Recording And Media Presentation To Judges For Inspection	The judges will be given media data recorded from the payload and container using the camera, the interface screenshot, and payload telemetry data in the form of a .csv file via a USB memory storage device
Description of .csv Telemetry File Creation For Judges	 All received telemetry data will be saved as .csv (Comma Separated Value) file. In CSV format, data is separated by a comma CSV file name will be "Flight_<team_id>.csv"</team_id>
Simulation Mode Description	GCS will command the payload using SIM ENABLE and SIM ACTIVATE. After that, GCS will read the lines of the .txt file containing the barometric pressure data and communicate it to the flight software at intervals of one second using the Simulated Pressure Data Command





Dashboard View



	1085 MISSION TIME 00000000	CE.II	Pers	7		SROUND CONTROL STATION NIKA NEGERI SURABAYA			0
	00:00:00.00 воот	Command	Team ID		Pressure	S PAYLOAI	þ	FLIGHT SIMULATION	
		CMD	1085	SIMP	93948		^		
		CMD	1085	SIMP	93949				
		CMD	1085	SIMP	93948			- 📲 🤅	\Users\user
	п номе	CMD	1085	SIMP	93948				auslaade
Data CSV Viow		CMD	1085	SIMP	93948				
Data CSV View		CMD	1085	SIMP	93948 93948				ATUS
	GRAPH	CMD	1085	SIMP	93948			SIA	lius
		CMD	1085	SIMP	93949			Serial Port :	Disconnec
		CMD	1085	SIMP	93949			Serial Data :	1-11-
	🔊 мар	CMD	1085	SIMP	93949			Serial Data :	ICIE
		CMD	1085	SIMP	93949			CMD Echo :	
		CMD	1085	SIMP	93948				
	DATA	CMD	1085	SIMP	93948			3D Model :	Not Starte
		CMD	1085	SIMP	93948			Mini Map :	Not Start
		CMD	1085	SIMP	93948				
	🗱 SETTING	CMD	1085	SIMP	93947			CHEC	скѕим
		CMD	1085	SIMP	93947 93947				
		CMD	1085	SIMP	93947 93947				
		CMD	1085	SIMP	93947			Corrupted :	
		CMD	1085	SIMP	93829			Total Data :	
		CMD	1085	SIMP	93085				
		CMD	1085	SIMP	92016			PERFOR	RMANC
	96% On Charging	CMD	1085	SIMP	89603		v .	RAM/CPU :	

CanSat Integration and Test

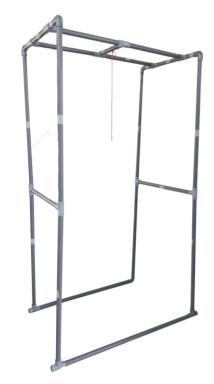
Tsabitah Akmal Al Mumtazah

CanSat Integration and Test Overview

Subsystem Level	Integrated Level Functional	Environmental	Simulation
 Sensors CDH EPS Radio communications FSW Mechanical Descent Control 	 Descent testing Communications Mechanisms Deployment 	 Drop test Thermal test Vibration test Fit Check Vacuum test 	GCSFlight Software

Subsystem Level Testing Plan				
Sensors	 Functional tests of the sensors on the breadboard High-accuracy sensor calibration 			
CDH	 XBEE data transfer range and configuration Verify the data's accuracy and speed of transmission to the ground station Ensure that the data format follows the mission guide 			
EPS	 Testing each component to ensure proper operation Testing that power can fulfill the demand for electronic components Inspect electronics for damage such as short circuits 			
Radio Communications	Antenna range testBeam and stability of communication testing			
FSW	 Accuracy of the data received from sensors and camera Maintain recovery data in case of a microcontroller resets Flight Algorithm test State testing 			
Mechanical	 Payload release mechanism test Ensure the component of CanSat can survive when it's launched Ensure the payload is uprighted after landing Servo and DC motor will be inspected carefully to ensure freedom of operation 			
Descent Control	 CanSat stability drop test Parachute system test Payload aerobraking test 			

Integrated Level Functional Test Plan				
Descent Testing	 The purpose of this test is to ensure that CanSat descends at the speed defined in the mission guide We will drop a 700 g container from the top of the buildings using a parachute to test its descent rate 			
Communications	 The purpose of this test is to ensure that the communication system is functional We will use flight software to communicate with the XBEE at 1Hz for the payload at various ranges. The data must be shown in the GCS monitor This test will be performed in a crowded area to ensure that the signal is not disturbed 			
Mechanisms	 The purpose of this test is to ensure that the payload can be released from the container and the parachute mechanism operates correctly Verify that the payload parachute mechanism is succeed Ensure the payload deploys a heat shield after leaving the container 			
Deployment	 Parachute deployment will be tested at various altitude CanSat deployment at various altitude Check for any sharp edges or obstacles that could prohibit CanSat from being deployed 			



Drop Test

This test is designed to verify that the container parachute and attachment point will survive the deployment from the rocket payload section which can be very violent.

- Power on CanSat
- Verify telemetry is being received
- Raise CanSat by the a 61 cm non-stretching cord
- Release the CanSat
- Verify the CanSat did not lose power
- Inspect for any damage, or detached parts
- Verify telemetry is still being received

(CanSat mission guide)

Drop Test Frame

Thermal Test

This test is to verify the CanSat and container can operate in a hot environment. The heat source will be provided by a thermal chamber and a hot air gun.

- Place CanSat into a thermal chamber, turn on the CanSat, close and seal the thermal chamber, turn on the heat source
- Monitor the temperature and turn off the heat source when the internal temperature reaches 60 °C and turn on the heat source when the temperature drops to 55 °C
- Maintain the test conditions for two hours
- Turn off the heat source and perform visual inspection and any functional tests to verify the CanSat survived the thermal exposure and can operate as expected
- With the CanSat still hot, test any mechanisms and structures to make sure the integrity has not been compromised. Take precautions to avoid injury
- Verify epoxy joints and composite materials still maintain their strengths

(CanSat mission guide)

EEPISAT's Thermal Chamber

Vibration Test

This test is designed to verify the mounting integrity of all components, mounting connections, structural integrity, and battery connections. The vibration will be tested with an orbital sander.

- Power on the CanSat
- Verify accelerometer data is being collected
- Power up the sander. Once the sander is up to full speed, wait 5 seconds
- Power down the sander to a full stop. Repeat it four more times
- Inspect the CanSat for damage and functionality
- Verify accelerometer data is still being collected
- Power down CanSat

(CanSat mission guide)

RK3000 Vertical Vibration Meter

Fit Test

This test is designed to verify if the CanSat is able to fit in rocket. To ensure that CanSat fits in the rocket and reduces the possibility of deployment failure, we use vernier caliper to control the accuracy of CanSat's diameter with a margin of error.

(CanSat mission guide)

Vernier Caliper Source: https://www.aliexpress.us

Vacuum Test

This test is designed to verify deployment operation of the payload.

- Suspend the fully configured and powered CanSat in the vacuum chamber
- Turn on the vacuum to start pulling a vacuum
- Monitor the telemetry and stop the vacuum when the peak altitude has been reached
- Let the air enter the vacuum chamber slowly and monitor the operation of the CanSat
- Collect and save telemetry
- Make the saved telemetry available for the judges to review

(CanSat mission guide)

Vacuum Chamber Source: https://ubuy.co.id

GCS

This test is designed to verify if the Ground Station is capable of reading a .txt file of barometric pressure data that simulates the mission profile and transmitting the values to the payload at a rate of one data per second (1 Hz) via commands. We will put it to the test by preparing barometric data in .txt file. The **Simulated Pressure Data** command will read data containing a barometric pressure value and transmit it to the flight software at one second interval (1 Hz) to start simulating altitude. GCS will receive the converted altitude value from the flight software.

Flight Software

This test is designed to verify that the GCS barometric pressure data was generated in altitude. We will enable simulation mode with **ENABLE** command from GCS. After that, we begin the simulation mode with **ACTIVATE** command to stop reading pressure from the sensor system. Substituted the data of the sensor with .txt file from the committee and make sure it transmitted to GCS in altitude data. At 101325 Pascals = approximately sea level barometric data will be saved to SD Card as an altitude ground level reference.

Mission Operations & Analysis

Tsabitah Akmal Al Mumtazah

1. Arrival

- Team arrival at the launch site
- GCS and antenna setup
- · Check for any damages that may occur during travel

2. Pre-Launch

- Communication inspection
- Mechanism inspection
- · Assembly of the container and payload
- · Check the CanSat dimension and weight

3. Rocket Integration

- Final CanSat inspection completed before launch
- Turn on the CanSat, integrate it into the rocket, and ensure communication with GCS

4. Mission

- CanSat in a rocket launch
- Flight monitoring
- Display GCS to the judges and collect telemetry data during the mission
- Recovery crew preparation

5. Recovery

- CanSat recovery by location from last telemetry and buzzer
- Inspection of CanSat damage
- Retrieve data from SD Card in the payload

6. Data Analysis

- · GCS data analysis and acquisition
- Deliver SD card and telemetry data to judges for scoring
- Evaluation team for launch day
- PFR preparation

Roles	Member Name
Mission Control Officer (Responsible for informing the Flight Coordinator when the team and their CanSat is ready to be launched)	 Fatwa Aulia Al-Haq
Ground Station Crew (Responsible for monitoring the ground station for telemetry reception and issuing commands to the CanSat)	Muhammad Tsaqif Mukhayyar
Recovery Crew (Responsible for tracking the CanSat and going out into the field for recovery and interacting with the field judges)	
CanSat Crew (Responsible for preparing the CanSat, integrating it into the rocket, and verifying its status)	Artaka Sunu Adhi PrasetyaAchmad Bagus Okto Faerizqi

Mission Operations Manual Development Plan

Mission Operational Manual	Description
Ground Station Configuration	System setup and communication test, antenna communication test
CanSat Preparation	CanSat general inspection, fit check and major mechanism inspection
CanSat Integration into Rocket	CanSat final inspection and clearance before integration into rocket
Launch Preparation Procedure	Document is provided by CanSat competition
Launch Procedure	Document is provided by CanSat competition
Removal Procedure	Recovery and data acquisition

CanSat Recovery

- · Recovery crew will maintain visual contact with the container and payload to aid recovery
- We will provide team details on CanSat's outside construction
- We also use GPS to track the payload
- The color of the container, payload, and parachute is orange
- Payload has a buzzer that will continuously buzz when it lands

This address labeling will be placed on our container and payload's body

Requirements Compliance

Tsabitah Akmal Al Mumtazah

We designed and created CanSat by analyzing and identifying the CanSat Mission Guide 2023. The system will be tested in compliance with the CanSat Integration and Test section.

- We have complied with **56 requirements** based on the CanSat Mission Guide 2023.
- There are 5 partial compliances that will require further testing. We need to build some prototypes in order to fully comply with these requirements that s were only partially met.
- There are **not any requirements** that don't comply with our design.

Requirements Compliance (1/7)

RN	Requirement	Compliance	Ref Slides	Notes
1	Total mass of the CanSat (science probe and container) shall be 700 grams +/- 10 grams.	Comply	<u>83-86</u>	
2	CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.	Comply	<u>25</u>	
3	The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.	Comply	<u>25</u>	
4	The container shall be a fluorescent color; pink, red or orange.	Comply	<u>143</u>	
5	The container shall be solid and fully enclose the science probes. Small holes to allow access to turn on the science probes are allowed. The end of the container where the probe deploys may be open.	Comply	<u>13</u>	
6	The rocket airframe shall not be used to restrain any deployable parts of the CanSat.	Comply	<u>25</u>	
7	The rocket airframe shall not be used as part of the CanSat operations.	Comply	<u>25</u>	
8	The container's parachute shall not be enclosed in the container structure. It shall be external and attached to the container so that it opens immediately when deployed from the rocket.	Comply	<u>62</u>	
9	The Parachute shall be fluorescent Pink or Orange.	Comply	<u>36</u>	
10	The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5 m/s.	Comply	<u>53-54</u>	
11	0 altitude reference shall be at the launch pad.	Comply	<u>124</u>	

Requirements Compliance (2/7)

RN	Requirement	Compliance	Ref Slides	Notes	
12	All structures shall be built to survive 15 Gs of launch acceleration.	Il structures shall be built to survive 15 Gs of launch acceleration.			
13	All structures shall be built to survive 30 Gs of shock.	structures shall be built to survive 30 Gs of shock.			
14	All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high performance adhesives.	Comply	<u>81-82</u>		
15	All mechanisms shall be capable of maintaining their configuration or states under all forces.	Partial	<u>132-136</u>	Theoretically complies	
16	Mechanisms shall not use pyrotechnics or chemicals.	Comply	<u>56-80</u>		
17	Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting vegetation on fire.	Comply	<u>56-80</u>		
18	Both the container and probe shall be labeled with team contact information including email address.	Comply	<u>143</u>		
19	Cost of the CanSat shall be under \$1000. Ground support and analysis tools are not included in the cost. Equipment from previous years shall be included in this cost, based on current market value.	Comply	<u>154-158</u>		
20	XBEE radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBEE radios are also allowed.	Comply	<u>94</u>		

Requirements Compliance (3/7)

RN	Requirement	Compliance	Ref Slides	Notes
21	XBEE radios shall have their NETID/PANID set to their team number.	Comply	<u>95</u>	
22	XBEE radios shall not use broadcast mode.	Comply	<u>95</u>	
23	The container (if needed) and probe shall include an easily accessible power switch that can be accessed without disassembling the cansat and science probes and in the stowed configuration.	Comply	<u>21</u>	
24	The probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the cansat and in the stowed state.	Comply	<u>101-102</u>	
25	An audio beacon is required for the probe. It shall be powered after landing.	Comply	<u>101-102</u>	
26	The audio beacon shall have a minimum sound pressure level of 92 dB, unobstructed.	Comply	<u>101</u>	
27	Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed.	Comply	<u>104</u>	
28	An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.	Comply	<u>19-21,</u> <u>81-82</u>	
29	Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.	Comply	<u>81-82</u>	

Requirements Compliance (4/7)

RN	Requirement	Compliance	Ref Slides	Notes
30	The CanSat shall operate during the environmental tests laid out in Section 3.5.	Partial	<u>132-136</u>	We have not integrated our CanSat yet
31	The CanSat shall operate for a minimum of two hours when integrated into the rocket.	Partial	<u>104</u>	Theoretically complies
32	The probe shall be released from the container when the CanSat reaches 500 meters.	Comply	<u>22-24</u>	
33	The probe shall deploy a heat shield after leaving the container.	Comply	<u>22-24</u>	
34	The heat shield shall be used as an aerobrake and limit the descent rate to 20 m/s or less.	Comply	52-54	
35	At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s +/- 1m/sec.	Comply	<u>51,</u> 53-54	
36	Once landed, the probe shall upright itself.	Comply	<u>78-80</u>	
37	After uprighting, the probe shall deploy a flag 500 mm above the base of the probe when the probe is in the upright position.	Comply	<u>78-80</u>	
38	The probe shall transmit telemetry once per second.	Comply	<u>95</u>	
39	The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked.	Comply	<u>96-97</u>	
40	The probe shall include a video camera pointing down to the ground.	Comply	<u>33</u>	

Requirements Compliance (5/7)

RN	Requirement	Compliance	Ref Slides	Notes
41	The video camera shall record the flight of the probe from release to landing.	Comply	<u>27</u>	
42	The video camera shall record video in color and with a minimum resolution of 640x480.	Comply	<u>33-34</u>	
44	The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets.	Comply	<u>113</u>	
45	The probe shall maintain mission time throughout the whole mission even with processor resets or momentary power loss.	Comply	<u>113</u>	
46	The probe shall have its time set to within one second UTC time prior to launch.	Comply	<u>95-97</u>	
47	The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file.	Comply	<u>114-115</u>	
48	In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the payload altitude.	Comply	<u>114-115</u>	
49	The payload flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.	Comply	<u>114-115</u>	
50	The ground station shall command the CanSat to start calibrating the altitude to zero when the CanSat is on the launch pad prior to launch.	Comply	<u>124</u>	

Requirements Compliance (6/7)

RN	Requirement	Compliance	Ref Slides	Notes
51	The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.	Comply	<u>124</u>	
52	Telemetry shall include mission time with 0.01 second or better resolution.	Comply	<u>113</u>	
53	Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.	Comply	<u>113</u>	
54	Each team shall develop their own ground station.	Comply	<u>120-127</u>	
55	All telemetry shall be displayed in real time during descent on the ground station.	Comply	<u>124</u>	
56	All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.)	Comply	<u>124</u>	
57	Teams shall plot each telemetry data field in real time during flight.	Comply	<u>96-97</u>	
58	The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBEE radio and a hand-held antenna.	Comply	<u>120-123</u>	
59	The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site.	Comply	<u>120-127</u>	
60	The ground station software shall be able to command the container to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.	Comply	<u>124</u>	

Requirements Compliance (7/7)

RN	Requirement	Compliance	Ref Slides	Notes
61	When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the CanSat.	Comply	<u>114-115</u>	
BM	A video camera shall be integrated into the container and point toward the payload. The camera shall record the event when the payload is released from the container. Video shall be in color with a minimum resolution of 640x480 pixels and a minimum of 30 frames per second. The video shall be recorded and retrieved when the container is retrieved.	Comply	<u>34</u>	

Management

Arneta Firdaus

Electronics Components

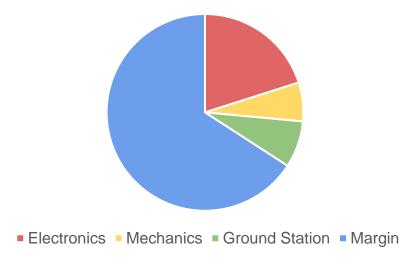
Component	Quantity	Considerations	Unit Cost (\$)	Total Cost (\$)
STM32F407VGT6	1	Actual	25.0	25.0
MPU6050	1	Actual	1.34	1.34
BME280	1	Actual	10.02	10.02
BN-220	1	Actual	13.35	13.35
Servo MG90	1	Actual	1.74	1.74
MX 1508 Driver Motor	1	Actual	0.47	0.47
DC Motor GA-N20	1	Actual	3.0	3.0
SD Card Module	1	Actual	0.60	0.60
Xbee Pro S3B	1	Actual	57.52	57.52
Limit Switch	3	Actual	0.05	0.15
Taoglas Antenna FXP290	1	Actual	17.05	17.05
Camera SQ11	2	Actual	4.01	8.02
SD Card Robot 8GB	2	Actual	3.34	6.68
ON/OFF Switch	2	Actual	0.14	0.28
Micro USB Type B	1	Actual	0.05	0.05
Buzzer 5V	1	Actual	0.10	0.10
LED 3mm	2	Actual	0.03	0.06
Voltage Regulator	2	Actual	0.067	0.134
Olight 18650	2	Actual	25.13	50.26
Battery Charger 18650 (2 Slots)	1	Actual	2.81	2.81
CR2032 Coin Cell	1	Actual	0.17	0.17
PCB	2	Actual	1.05	2.10
Те	otal Cost Electron	ics Components (\$)		200.904

Mechanics Components

Component	Quantity	Considerations	Unit Cost (\$)	Total Cost (\$)		
Carbon Fiber Rod Solid 3mm	16	Actual	0.83	13.28		
Carbon Fiber Rod Tube 5mm	1	Actual	2.65	2.65		
Carbon Fiber Rod Tube 3mm	1	Actual	0.83	0.83		
ABS+	1	Actual	12.09	12.09		
Resin Epoxy	1	Actual	15.83	15.83		
Ripstop Nylon	1	Actual	1.39	1.39		
Chinese Knotting Cord	1	Actual	1.42	1.42		
Acrylic 600 x 400 x 2 mm	1	Actual	3	3		
Fiberglass Woven Cloth 0,17 x 1200 x 1000mm	1	Actual	1.42	1.42		
Torsion Spring	4	Actual	0.32	1.28		
Compression Spring	1	Actual	0.65	0.65		
Teflon	1	Actual	10.0	10.0		
Tot	Total Cost Mechanics Components (\$)					

Ground Station Components

Component	Quantity	Considerations	Unit Cost (\$)	Total Cost (\$)
Moxon Antenna	1	Actual	10	10
XBee Pro S3B	1	Actual	57.52	57.52
XBee Adapter	1	Actual	5.27	5.27
USB Cable	1	Actual	1.29	1.29
RP SMA	1	Actual	2.59	2.59
Total	76.67			



Component	Total Cost (\$)
Total Cost Electronics Components	200.904
Total Cost Mechanics Components	63.84
Total Cost Ground Station Components	76.67
Total Hardware Budget (\$)	341.414

CanSat Requirement Cost – Hardware Budget = Margin

\$ 1000 - **\$** 341.414 = **\$** 658.586

Others Cost

Component	Quantity	Considerations	Unit Cost (\$)	Total Cost (\$)		
Registration	1	Actual	200	200		
Prototyping	1	Estimated	100	100		
Round Trip CGK-IAD Ticket	10 people	Estimated	1,745	17,450		
Round Trip Train Ticket	10 people	Estimated	51.04	510.4		
Visa	10 people	Estimated	160	1,600		
Uniform	15 people	Actual	19.65	294.75		
SIM Card	1 people	Actual	30	30		
Guest House	7 nights	Estimated	100	700		
Bus	10 people	Estimated	86	860		
Total	Total Cost Ground Station Components (\$)					

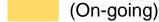
Sources of Income

Sources of Income	Total Cost (\$)
PENS Funding	3,272.36
Sponsorship	19,000
Total Income (\$)	22,272.36

Cansat 2023

Program Schedule Overview

Project Start Date: 01-Oct-22


MC=Mechanical WM=Web Master

PM=Project Manager

CANSAT PROJECT SCHEDULE

Project Leader: Fatwa Aulia AD=Administration HW=Hardware BT=Brand SS=Sponsorship SW=Software Task Status Sep Mar Mav Assian Start Days Oct Nov Dec Jan Feb Summary Team Member Recruitment ALL 1-Sep-22 27-Sep-22 26 Completed Internal Funding AD 27-Sep-22 27-Sep-22 1 Completed Middle 1st Semester Exam ALL 3-Oct-22 7-Oct-22 4 Exam PDR Preparation ALL 10-Oct-22 27-Jan-23 109 Completed Procurement of Components & Materials HW. MC.SW 10-Oct-22 30-Mar-23 171 On-going AD, SS, BT 14-Oct-22 25-May-23 223 Sponsorship On-going 14-Oct-22 EEPISAT's Website Developing WM 18-Jun-23 247 On-going Registration PM 4-Nov-22 4-Nov-22 1 Completed Final 1st Semester Exam ALL 21-Nov-22 25-Nov-22 4 Exam **Team Member Vacation** ALL 25-Dec-22 19-Feb-23 56 On-going PM 1-Feb-23 PDR Submission 1-Feb-23 1 Upcomina **CDR** Preparation ALL 1-Feb-23 59 1-Apr-23 Upcoming 85 System Integration ALL 1-Mar-23 25-May-23 Upcoming **CDR Submission** PM 1-Apr-23 1-Apr-23 1 Upcoming Mid 2nd Semester Exam ALL 3-Apr-23 6-Apr-23 3 Exam ALL 3-Apr-23 25-May-23 52 System Improvement Upcoming Final 2nd Semester Exam ALL 22-May-23 26-May-23 4 Exam Enviromental Test Submission ALL 26-May-23 26-May-23 1 Upcoming CanSat Shipping ALL 29-May-23 29-May-23 1 Upcoming FRR (Flight Readiness Review) ALL 9-Jun-23 9-Jun-23 1 Upcoming Competition ALL 8-Jun-23 11-Jun-23 3 Upcoming PFR PM 11-Jun-23 11-Jun-23 1 Upcoming

(Exam)

(Upcoming)

Task	Assign	Start	End	Days	Status		Sep		Oct Nov		Nov		Dec		J	an	Feb		Mar		ļ	Apr		Мау		Jun		
Mechanical	echanical																											
Mission Guide Study	MC	1-Oct-22	8-Oct-22	7	Completed																							
Middle 1st Semester Exam	ALL	3-Oct-22	7-Oct-22	4	Exam																							
Prototype Manufacturing	MC	4-Oct-22	1-Nov-22	28	Completed																							
Material Trade	MC	9-Oct-22	31-Oct-22	22	Completed																							
Cansat 1st Design	MC	9-Oct-22	5-Dec-22	57	Completed																							
Procurement of Materials	MC	10-Oct-22	30-Mar-23	171	On-going																							
Prototype Testing	MC	29-Oct-22	2-Dec-22	34	Completed														Τ									
Cansat 2nd Design	MC	10-Nov-22	27-Dec-22	47	Completed																							
Final 1st Semester Exam	ALL	21-Nov-22	25-Nov-22	4	Exam																							
Team Member Vacation	ALL	25-Dec-22	19-Feb-23	56	On-going																							
Mass Budget Calculate	MC	4-Jan-23	10-Jan-23	6	Completed																							
System Integrating	MC	1-Mar-23	25-May-23	85	Upcoming																							
Mid 2nd Semester Exam	ALL	03-Apr-23	6-Apr-23	3	Exam																							
System Improvement	MC	3-Apr-23	25-May-23	52	Upcoming								Ţ															
System Testing	MC	15-Apr-23	29-Apr-23	14	Upcoming																							
Final 2nd Semester Exam	ALL	22-May-23	26-May-23	4	Exam																							

Assign to: Artaka Sunu Adhi Prasetya (MC)

Task	Assign	Start	End	Days	Status	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Hardware	Irdware														
Mission Guide Study	нw	1-Oct-22	8-Oct-22	7	Completed										
Middle 1st Semester Exam	ALL	3-Oct-22	7-Oct-22	4	Exam										
Component Trade	нw	9-Oct-22	12-Nov-22	34	Completed										
Procurement of Components	MC	10-Oct-22	30-Mar-23	171	On-going										
Payload PCB Design	нw	20-Oct-22	30-Nov-22	41	Completed										
XBEE Communication Test	нw	21-Oct-22	1-Nov-22	11	Completed										
Electrical Prototype Test	нw	10-Nov-22	1-Dec-22	21	Completed										
Component Testing	нพ	12-Nov-22	1-Dec-22	19	Completed										
Final 1st Semester Exam	ALL	21-Nov-22	25-Nov-22	4	Exam										
Flight Algorithm	нw	1-Dec-22	4-Jan-23	34	Completed										
Team Member Vacation	ALL	25-Dec-22	19-Feb-23	56	On-going										
Camera Tracking Test	нw	15-Feb-23	16-Mar-23	29	Upcoming										
System Integrating	нw	1-Mar-23	25-May-23	85	Upcoming										
Mid 2nd Semester Exam	ALL	3-Apr-23	6-Apr-23	3	Exam										
System Improvement	нw	3-Apr-23	25-May-23	52	Upcoming										
System Testing	нw	15-Apr-23	29-Apr-23	14	Upcoming										
Final 2nd Semester Exam	ALL	22-May-23	26-May-23	4	Exam										

Assign to: Achmad Bagus Okto Faerizqi (HW)

Task	Assign	Start	End	Days	Status	Sep	Oct		Nov		Dec		Jan		Feb	Mar	Арг	Ma	ay	J	un
Software	ftware																				
Mission Guide Study	SW	1-Oct-22	8-Oct-22	7	Completed																
Middle 1st Semester Exam	ALL	3-Oct-22	7-Oct-22	4	Exam																
GCS Design	SW	9-Oct-22	27-Dec-22	79	Completed																
Antenna Trade	SW	17-Oct-22	28-Oct-22	11	Completed																
Improve Antenna Design	SW	31-Oct-22	27-Dec-22	57	Completed																
Final 1st Semester Exam	ALL	21-Nov-22	25-Nov-22	4	Exam																
Team Member Vacation	ALL	25-Dec-22	19-Feb-23	56	On-going																
System Integrating	SW	1-Mar-23	25-May-23	85	Upcoming																
Antenna Manufacturing	SW	10-Mar-23	20-Mar-23	10	Upcoming																
Antenna Range Test	SW	1-Apr-23	30-Apr-23	29	Upcoming																
Mid 2nd Semester Exam	ALL	3-Apr-23	6-Apr-23	3	Exam																
System Improvement	SW	3-Apr-23	25-May-23	52	Upcoming																
System Testing	SW	15-Apr-23	29-Apr-23	14	Upcoming																
Final 2nd Semester Exam	ALL	22-May-23	26-May-23	4	Exam																

Assign to: Muhammad Tsaqif Mukhayyar (SW)

Conclusions (1/2)

Division	Major Accomplishments	Major Unfinished Work
Mechanical	 Major mechanism has been tested 	 Enviromental testing of integrated CanSat CanSat design improvement based on testing and evaluation results
Hardware	 All sensors have been tested XBEE Communication test completed 	 CanSat PCB boards are still in improvement phase Integration with software and mechanic
Software	 GUI design and testing completed 	 Antenna design improvement based on testing and evaluation results
Administration & Sponsorship	 Sponsorship and partnership contracted 	Waiting for other sponsors
Brand Team & Web Master	Official social media still active	Developing the social mediaWebsite is still on developing

Conclusions (2/2)

Bamantara EEPISAT Are Ready to Proceed to The Next Stage of Development

- Preliminary Design Phase is finished for mechanical, software, electronic systems and is ready for implementation
- The official team has already improved the team's social media and entered a sponsorship agreement