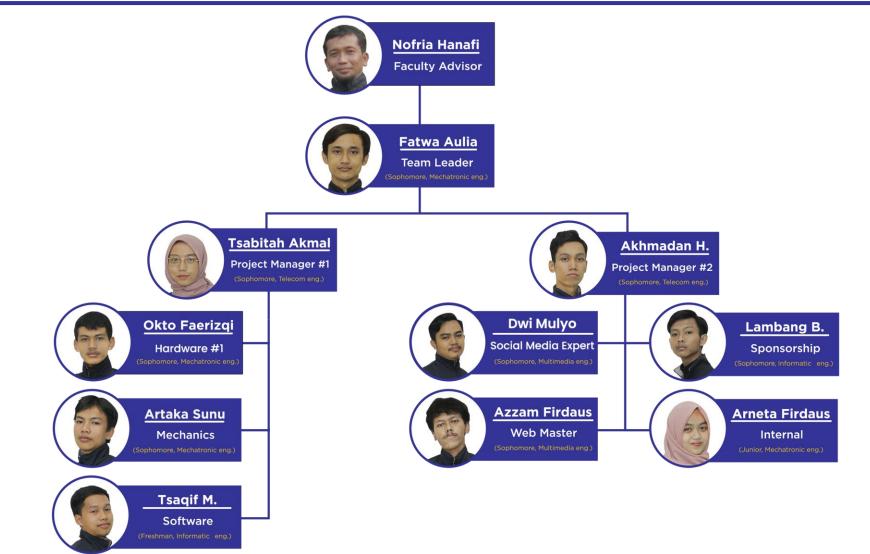


CanSat 2023 Critical Design Review (CDR) Outline Version 1.0

#1085 Bamantara EEPISAT



Section	Presenter	Pages
Introduction	Arneta Firdaus	<u>2-4</u>
Systems Overview	Tsabitah Akmal Al Mumtazah	<u>5 – 22</u>
Sensor Subsystem Design	Achmad Bagus Okto Faerizqi	<u>23 – 37</u>
Descent Control Design	Artaka Sunu Adhi Prasetya	<u>38 – 60</u>
Mechanical Subsystem Design	Artaka Sunu Adhi Prasetya	<u>61 – 87</u>
Communication and Data Handling (CDH) Subsystem Design	Achmad Bagus Okto Faerizqi	<u>88 – 100</u>
Electrical Power Subsystem (EPS) Design	Achmad Bagus Okto Faerizqi	<u>101 – 108</u>
Flight Software (FSW) Design	Muhammad Tsaqif Mukhayyar	<u>109 – 122</u>
Ground Control System (GCS) Design	Muhammad Tsaqif Mukhayyar	<u>123 – 133</u>
CanSat Integration and Test	Tsabitah Akmal Al Mumtazah	<u>134 – 151</u>
Mission Operations and Analysis	Tsabitah Akmal Al Mumtazah	<u> 152 – 159</u>
Requirements Compliance	Tsabitah Akmal Al Mumtazah	<u> 160 – 168</u>
Management	Arneta Firdaus	<u> 169 – 185</u>

Acronyms

Acronyms	Definition	EPS	Electrical Power System	RAM	Random Access Memory
3D	Three Dimensional	FSW	Flight Software	RN	Requirement Number
	Acrylonitrile Butadiene	GCS	Ground Control Station	RP-SMA	Reverse Polarity SMA
ABS	Styrene	GND	Ground	RTC	Real Time Clock
AC	Alternating Current	GPIO	General Peripheral Input Output	SD	Secure Digital
ADC	Analog to Digital Converter	GPS	Global Positioning System	SPI	Serial Peripheral Interface
BM	Bonus Mission	Hz	Hertz	UART	Universal Asynchronous Receiver/Transmitter(Serial)
CAD	Computer Aided Design	I/O	Input/Output	UTC	Universal Time Coordinated
	Communication Data	I2C	Inter-Integrated Circuit		Next Generation
CDH	Handling	IDE	Integrated Development Environment	XCTU	Configuration Platform for XBEE/RF Solution
CONOPS	Concept of Operation				
CSV	Comma Separated Value	MCU	Microcontroller Unit	Acronyms	Verification Methods
dB	Decibel	PCB	Printed Circuit Board	А	Analysis
dBi	Decibel Isotropic	PFR	Post Flight Review	I	Inspection
DC	Direct Current	PLA	Polylactic Acid	Т	Test
DoF	Degree of Freedom	PWM	Pulse Width Modulation	D	Demonstration

Systems Overview

Tsabitah Akmal Al Mumtazah

Mission Summary

Main Objectives	Bonus Objectives
 The mission is to simulate the landing sequence of a planetary probe Design a CanSat that shall consist of a container and a payload The CanSat shall be launched to an altitude ranging from 670 meters to 725 meters above the launch site and deployed near apogee 	 A video camera shall be integrated into the container and point toward the payload The camera shall record the event when the payload is released from the container Video shall be in color with a minimum resolution of 640x480 pixels and a minimum of 30 frames per second
	 External Objectives We have the intention to acquire first place in CanSat Competition 2023 To increase experience through any engineering project, adapt to the teamwork environment, and implement project and time management

Summary of Changes Since PDR (1/2)

Section	Part	PDR	CDR	Rationale					
Electrical Power Subsystem	Payload 5V Supply	5V voltage regulator	Buck converter	Provide more efficiency of power					
ш	Bottom Lid Locking Mechanism	Door with torsion spring	Velcro Locking door	Easy manufacturing process					
ical Subsyst Design	Bottom Holder	It doesn't exist	Bottom holder	To prevent the payload from getting stuck in the container when release					
Mechanical Subsystem Design	DC Motor Bracket	Compatible with small motor and gearbox	Compatible with bigger motor and gearbox	The new version provides more torque to reduce the risk of stuck					
Me	Flagpole Holder	Spring Without Holder	Spring With Holder	More sturdy and increase durability of Flagpole Holder					
Descent Control Design	There were no changes to the Sensor Subsystem Design								

	Summary of (2/2)	CENT X						
Section	Part	PDR	CDR	Rationale				
Sensor Subsystem Design	There were no changes to the Sensor Subsystem Design							
Communication Data Handling	There were no changes	s to the Communicat	ion and Data Handlir	ng Subsystem Design				
Flight Software	There	were no changes to t	he Flight Software D	Design				
Ground Control System	GCS GUI	Graph is using Livecharts2.Net Library	Graph is using ScottPlot library	A failure can occur when attempting to display real-time data that is delayed when being plotted				
Ground Sys	Antenna	Antenna is using Moxon Antenna	Antenna is using Moxon-Yagi Antenna	Improve the design and quality of antenna to minimize data loss				

System Requirement Summary (1/6)

	Dequirement	Decens	Driarity	V	erifi	catio	on
RN	Requirement	Reasons	Priority	А	I	Т	D
1	Total mass of the CanSat (science probe and container) shall be 700 grams +/- 10 grams.	Competition Requirement	High	√	√	√	
2	CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.	Competition Requirement	High		√	√	
3	The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.	Competition Requirement	High		√		
4	The container shall be solid and fully enclose the science probes. Small holes to allow access to turn on the science probes are allowed. The end of the container where the probe deploys may be open.	Competition Requirement	High		√	√	
5	The rocket airframe shall not be used to restrain any deployable parts of the CanSat.	Competition Requirement	High		√		
6	The rocket airframe shall not be used as part of the CanSat operations.	Competition Requirement	High		√		
7	The container's first parachute shall not be enclosed in the container structure. It shall be external and attached to the container so that it opens immediately when deployed from the rocket.	Competition Requirement	High		√	√	~
8	The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5 m/s.	Competition Requirement	High	√		\checkmark	
9	0 altitude reference shall be at the launch pad.	Competition Requirement	High			√	

System Requirement Summary (2/6)

DN	Requirement		Driarity	V	Verification		
RN			Priority	А	Т	Т	D
10	All structures shall be built to survive 15 Gs of launch acceleration.	Competition Requirement	High		√	√	~
11	All structures shall be built to survive 30 Gs of shock.	Competition Requirement	High		√	√	√
12	All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high performance adhesives.	Competition Requirement	High		√	√	
13	All mechanisms shall be capable of maintaining their configuration or states under all forces.	Competition Requirement	High			\checkmark	
14	Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting vegetation on fire.	Competition Requirement	High		√		
15	XBEE radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBEE radios are also allowed.	Competition Requirement	High	√	√	\checkmark	
16	XBEE radios shall have their NETID/PANID set to their team number.	Competition Requirement	High		√	\checkmark	
17	XBEE radios shall not use broadcast mode.	Competition Requirement	High		√	\checkmark	
18	The container (if needed) and probe shall include an easily accessible power switch that can be accessed without disassembling the cansat and science probes and in the stowed configuration.	Competition Requirement	High		√		√

System Requirement Summary (3/6)

RN	Requirement Reasons		Driarity	V	erifi	catio	on
KIN			Priority	А	I	Т	D
19	The probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the cansat and in the stowed state.	Competition Requirement	High		√		~
20	An audio beacon is required for the probe. It shall be powered after landing.	Competition Requirement	High				√
21	The audio beacon shall have a minimum sound pressure level of 92 dB, unobstructed.	Competition Requirement	High		√	√	
22	Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed.	Competition Requirement	High		√		
23	An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.	Competition Requirement	High		√	√	
24	Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.	Competition Requirement	High		√	\checkmark	
25	The CanSat shall operate during the environmental tests laid out in Section 3.5.	Competition Requirement	High	√	√	\checkmark	√
26	The CanSat shall operate for a minimum of two hours when integrated into the rocket.	Competition Requirement	High	\checkmark	√	\checkmark	√
27	The probe shall be released from the container when the CanSat reaches 500 meters.	Competition Requirement	High	\checkmark		\checkmark	

System Requirement Summary (4/6)

	Dequirement	Dessere	Drievity	V	erific	catio	n
RN	Requirement Reasons		Priority	А	T	Т	D
28	The probe shall deploy a heat shield after leaving the container.	Competition Requirement	High	√		\checkmark	
29	The heat shield shall be used as an aerobrake and limit the descent rate to 20 m/s or less.	Competition Requirement	High	√		√	
30	At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s +/- 1m/sec.	Competition Requirement	High	~		\checkmark	
31	Once landed, the probe shall upright itself.	Competition Requirement	High	√		√	
32	After uprighting, the probe shall deploy a flag 500 mm above the base of the probe when the probe is in the upright position.	Competition Requirement	High	√		\checkmark	
33	The probe shall transmit telemetry once per second.	Competition Requirement	High		\checkmark	\checkmark	
34	The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked.	Competition Requirement	High	√	√	√	~
35	The probe shall include a video camera pointing down to the ground.	Competition Requirement	High	~	\checkmark	\checkmark	
36	The video camera shall record the flight of the probe from release to landing.	Competition Requirement	High	√	√	\checkmark	√

System Requirement Summary (5/6)

	Dequirement	Dessere	Drievity	V	erifi	on	
RN	Requirement Reasons		Priority	А	I.	Т	D
37	The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets.	Competition Requirement	High	√		√	~
38	The probe shall maintain mission time throughout the whole mission even with processor resets or momentary power loss.	Competition Requirement	High	√		√	√
39	The probe shall have its time set to within one second UTC time prior to launch.	Competition Requirement	High		√	√	
40	The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file.	Competition Requirement	High	√	√	√	~
41	In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the payload altitude.	Competition Requirement	High			√	√
42	The payload flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.	Competition Requirement	High		\checkmark	√	√
43	The ground station shall command the CanSat to start calibrating the altitude to zero when the CanSat is on the launch pad prior to launch.	Competition Requirement	High			√	
44	The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.	Competition Requirement	High		√	√	√
45	Telemetry shall include mission time with 0.01 second or better resolution.	Competition Requirement	High			√	

System Requirement Summary (6/6)

DN	Requirement Reasons R		Drievity	V	erifi	catic	on
RN			Priority	А	1	Т	D
46	Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.	Competition Requirement	High		√	√	
47	Each team shall develop their own ground station.	Competition Requirement	High	√	√	√	
48	All telemetry shall be displayed in real time during descent on the ground station.	Competition Requirement	High	√	√	√	√
49	Teams shall plot each telemetry data field in real time during flight.	Competition Requirement	High		√	√	
50	The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBEE radio and a hand-held antenna.	Competition Requirement	High		√	√	
51	The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site.	Competition Requirement	High		√		
52	The ground station software shall be able to command the payload to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.	Competition Requirement	High		√	√	
53	When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the CanSat.	Competition Requirement	High	√	√	\checkmark	√
BM	A video camera shall be integrated into the container and point toward the payload. The camera shall record the event when the payload is released from the container.	Mission Guide	High	√	√	√	~

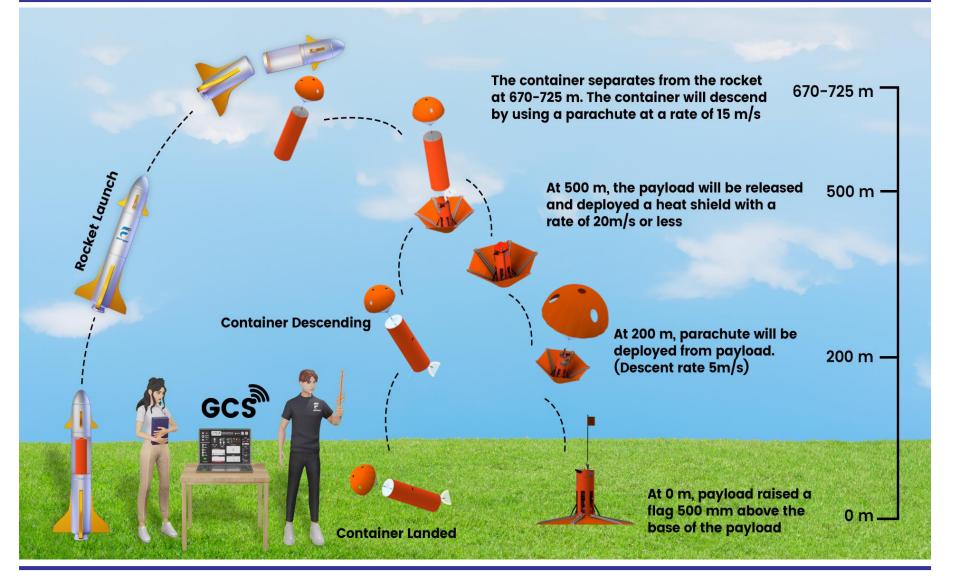
System Concept of Operations (CONOPS) (1/3)

Pre-Launch

- · Arrive at the launch site
- · GCS and antenna setup
- · Sensor system calibration and communication with the GCS command
- Final CanSat check completed
- Activate and load CanSat into a rocket

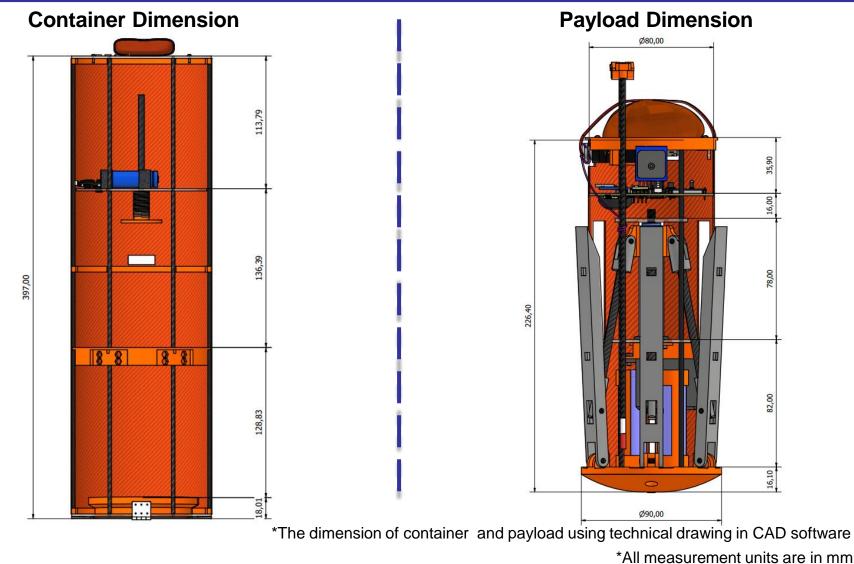
<u>Launch</u>

- · CanSat in a rocket launch
- CanSat is released from the rocket (670–725 m)
- · Container parachute deployment with a rate of 15 m/s
- The video camera started to record the separation of the payload then the payload open a heat shield at 500 m with a rate of 20 m/s or less
- · Payload parachute deployment at 200 m with a rate of 5 m/s
- Payload landed in the upright position and raised a flag 500 mm above the base of the payload. Therefore video camera stopped recording
- · Payload shall stop transmitting data to GCS


Post-Launch

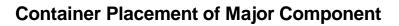
- CanSat recovery by location from last telemetry and buzzer
- Inspection of CanSat damage
- Take the SD Card from the payload
- Analyze data received
- PFR preparation

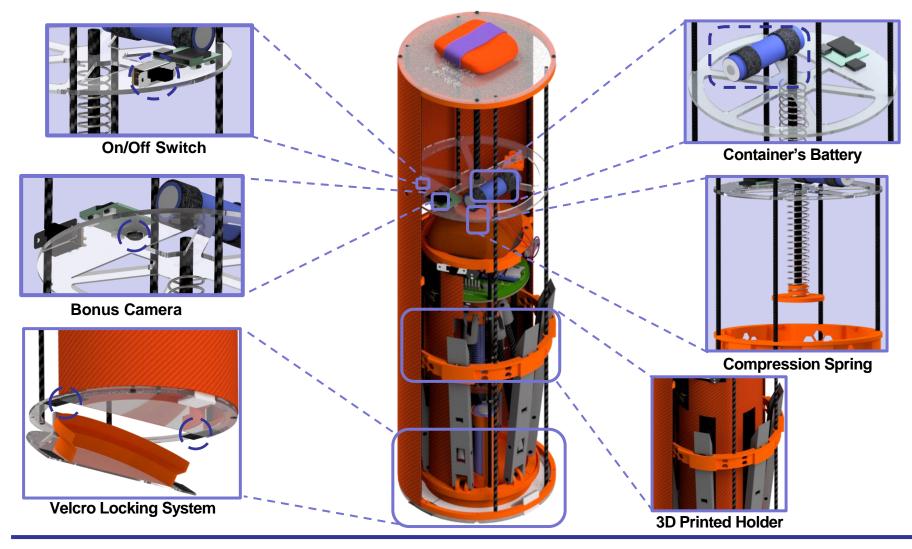
System Concept of Operations (CONOPS) (2/3)



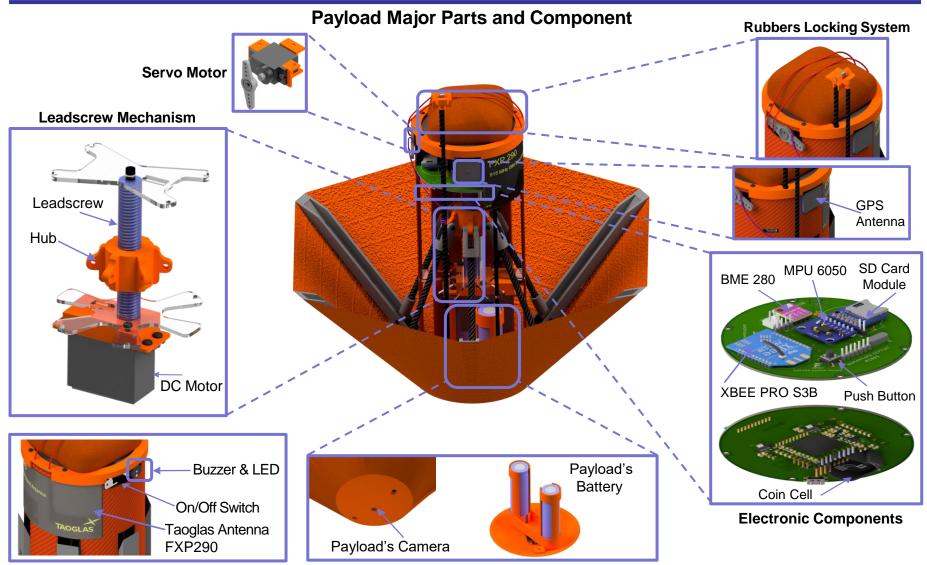
Team Member Roles and Responsibilities

Roles	Member Name
Mission Control Officer (Responsible for informing the Flight Coordinator when the team and their CanSat is ready to be launched)	 Fatwa Aulia Al-Haq
Ground Station Crew (Responsible for monitoring the ground station for telemetry reception and issuing commands to the CanSat)	Muhammad Tsaqif Mukhayyar
Recovery Crew (Responsible for tracking the CanSat and going out into the field for recovery and interacting with the field judges)	
CanSat Crew (Responsible for preparing the CanSat, integrating it into the rocket, and verifying its status)	Artaka Sunu Adhi PrasetyaAchmad Bagus Okto Faerizqi



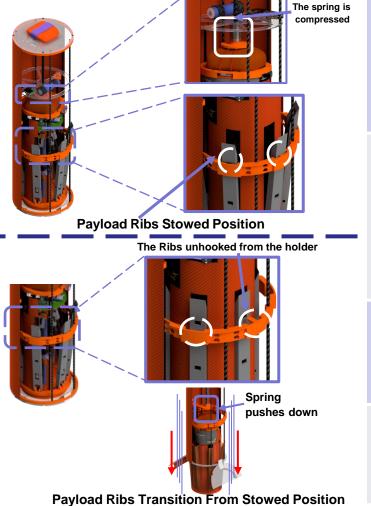


CELL X



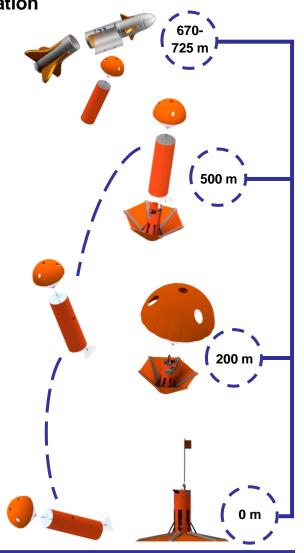
CanSat Physical Layout (3/4)

Presenter: Tsabitah Akmal Al Mumtazah


Cansat 2023 CDR: Team 1085 Bamantara EEPISAT

CanSat Physical Layout (4/4)

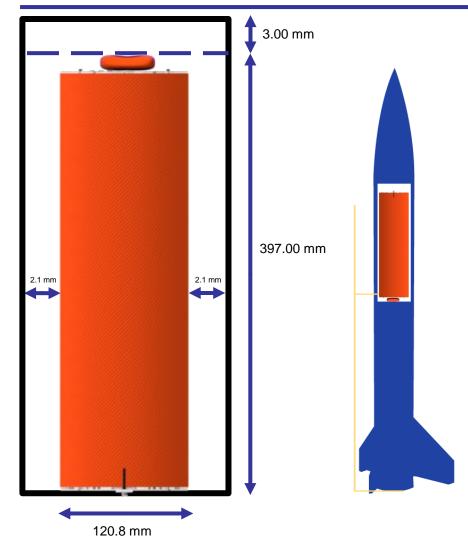
Payload Launch and Deployed Configuration



The container separates from the rocket at an altitude of 670-725 meters. The container will descend at a rate of 15 m/s using a parachute above the container.

At an altitude of 500 meters, the payload will be released from the container and open a heat shield that will also be used as an aerobraking device, with a descent rate of 20 m/s or less.

At an altitude of 200 meters, the parachute will be released from the payload. It will make the descent at a rate of 5 m/s.


The payload lands and after upright itself the payload raises a flag 500 mm above the base of the payload.

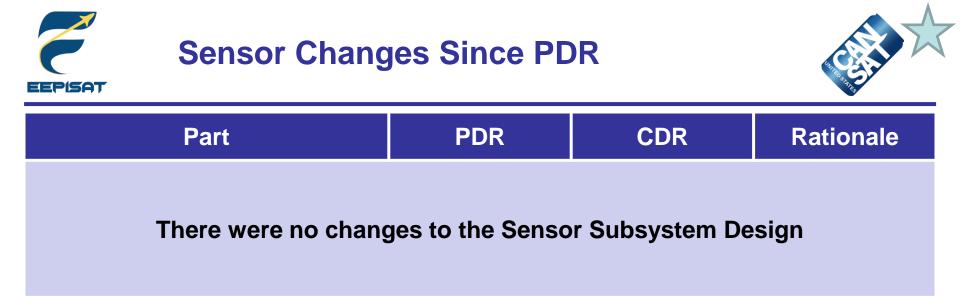
Launch Vehicle Compatibility

Dimension (Section)	Height (mm)	Diameter (mm)
Rocket (Requirement Dimensions)	400	125
Container	397.0	120.8
Payload	226.40	90

Information:

- 1. CanSat consists of two parts: container and payload
- 2. No sharp protrusions
- 3. The dimension of CanSat is designed to prevent shaking in the rocket and provide a gap to release
- 4. Rocket will not be used as part of CanSat operations

Sensor Subsystem Design

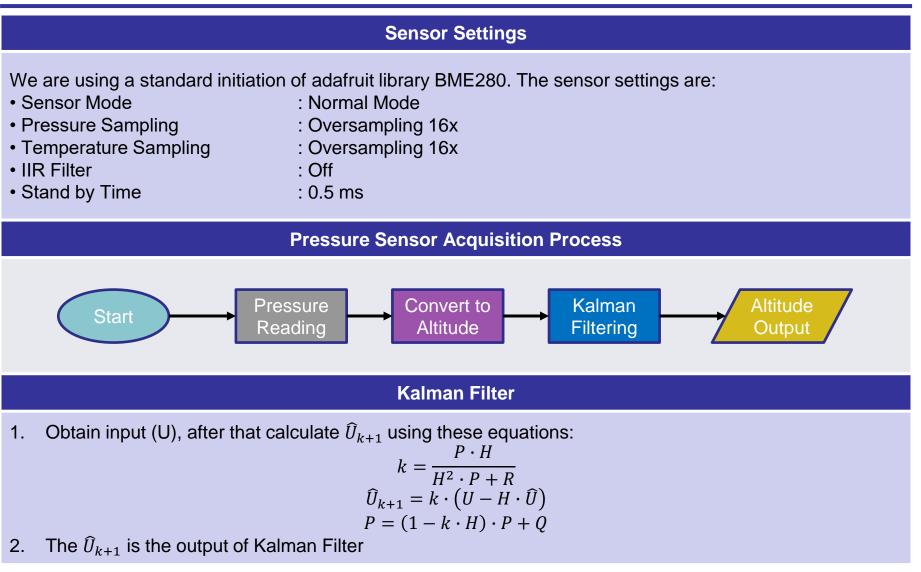

Achmad Bagus Okto Faerizqi

Sensor Subsystem Overview

Sensor Type	Selected Model	Function	Located In
Air Pressure	BME280	BME280 To measure air pressure in order to calculate altitude	
Air Temperature	BME280 To measure air temperature inside of the payload		Payload
Battery Voltage	ADC Voltage Divider	To measure battery voltage of the payload	Payload
Tilt Sensor	MPU6050	To detect orientation or inclination	Payload
GPS	BN-220	To obtain position or location	Payload
Camera	Quelima SQ11	To record video during the mission process	Payload

Payload Air Pressure Sensor Summary (1/2)

Model	Interface	Sensitivity (hPa)	Voltage (V)	Current (µA)	Range (hPa)	Accuracy (hPa)	Mass (g)	Size (mm)	Cost (\$)
BME 280	I2C	0.0018	1.71 – 3.6	2.8	300 – 1100	± 1.0	1.0	13.5 x 10.5 x 2	9.05

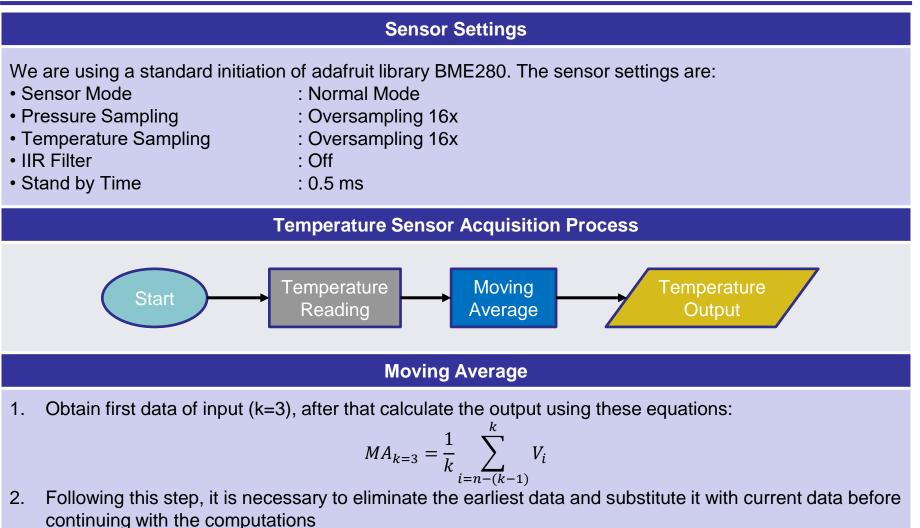

BME280 ✓	Data Format	(Altitude, m)
BME280 will acquire pressure	Equation	$\begin{aligned} Altitude &= 44330 \times \left(1 - \left(\frac{P}{P_0}\right)^{\frac{1}{5.255}}\right) \\ P: Atmospheric \ pressure \ at \ current \ altitude \ (hPa) \\ P_0: Atsmospheric \ pressure \ at \ sea \ level \ (hPa) \end{aligned}$
data based on the configured settings. Later, the pressure data will be transformed into altitude data.	Sample Output	Pressure : 1012.04 hPa Altitude : 10.0 m

Sample output in packet data:

1085,15:00:10.01,100,F,LAUNCH_WAIT,100.1,P,C,M,30.0,100.1,3.1,00:09:02,100.2,17.0199,189.0077,7,1.12,2.12,CXON,,127

Payload Air Temperature Sensor Summary (1/2)

Model	Interface	Sensitivity (°C)	Voltage (V)	Current (µA)	Range (°C)	Accuracy (°C)	Mass (g)	Size (mm)	Cost (\$)
BME 280	I2C	0.01	1.71 – 3.6	2.8	-40 ~ 85	±1.0	1.0	13.5 x 10.5 x 2	9.05

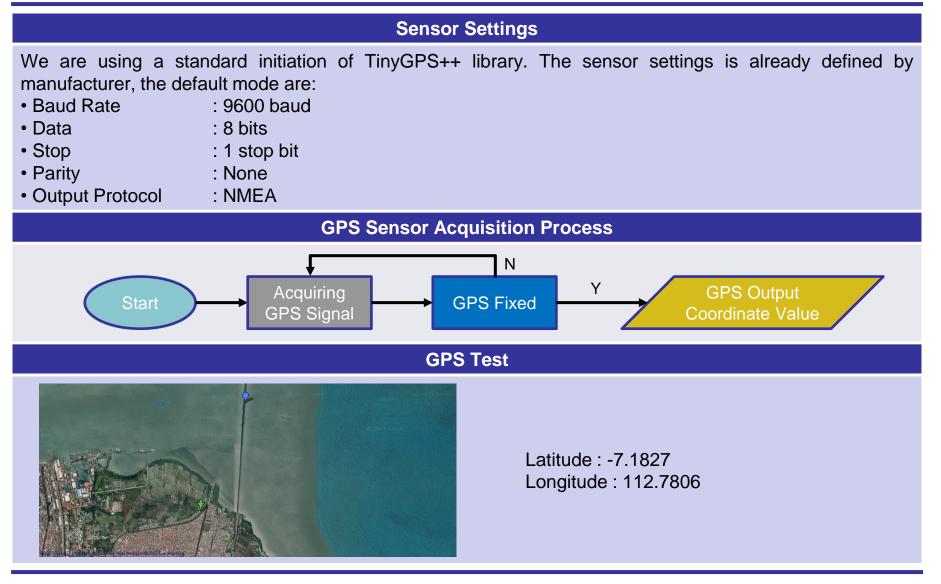

BME280 ✓	Data Format	(Temperature, °C)
BME280 will acquire temperature	Equation	No equations for this measurement
data based on the configured settings. After that, the temperature data will be processed using the moving average.	Sample Output	Temperature : 30 C

Sample output in packet data:

1085,15:00:10.01,100, F, LAUNCH_WAIT,100.1, P, C, M, 30.0, 100.1, 3.1,00:09:02,100.2,17.0199,189.0077,7,1.12,2.12, CXON,,127

3. Perform this process constantly

Payload GPS Sensor Summary (1/2)


Model	Interface	Range (m)	Sensitivity (dBm)	Voltage (V)	e Resolution (m)	Supply Current (mA)	Mass (g)	Size (mm)	Cost (\$)	
BN-220	UART	As long can connect to satellites	-167	3 – 5.5	± 2.5	67	5.3	22 x 20 x 6	14	
	BN-220 J			mat (i	(Time, hh:mm:ss) (Latitude, °) (Longitude, °) (Altitude, m) (Satellites, integer value showing number of satellites that was connected)					
			Equatio	on	It will automatically calculate the distance of this sensor with reference to satellite (at least 3)					
satellites calculate	in the the distan it can make	to at least 3 orbit and ce between an output of	Sample Output			GPS TIME:19:5 GPS LATITUDE GPS LONGITUDE GPS ALTITUDE GPS SATELITES	:-7.2936 :112.8079 :19.9	9		

Sample output in packet data:

1085,15:00:10.01,100, F, LAUNCH_WAIT,100.1, P, C, M, 30.0,100.1, 3.1,00:09:02,100.2,17.0199,189.0077,7,1.12,2.12,CXON,,127

EEPISAT	Payl (1/2)	CENT								
Model	Interface	Range (V)	Sensitivity (V)	Voltage (V)	Accuracy (%)	Mass (g)	Size (mm)	Cos t (\$)		
ADC STM32F4 07VGT6	Analog	0 - 3.3	0.000805 (12 bit)	3.3	>90%	Embedded	Embedded	0		
ADC STM32F407VGT6 ✓			Data Format (Battery Voltag				e, V)			
R1 R2 PB1 PB1 PB1 PB1 PB1 PB1 PB1 PB1			Equation	Batte	Battery Voltage = $\frac{3.3}{4096} \times \frac{R_1 + R_2}{R_2} \times ADC$ Read R_1 : First Resistor R_2 : Second Resistor					
convert analo battery voltag After that, or this reading	Digital Conver og signal that ro ge into binary n ur program will into battery d process it ge.	epresent umbers. convert voltage	Sample Output		Volt Volt					

Sample output in packet data:

1085,15:00:10.01,100, F, LAUNCH_WAIT,100.1, P, C, M, 30.0,100.1, 3.1,00:09:02,100.2,17.0199,189.0077,7,1.12,2.12,CXON,,127

Sensor Settings

From our calculation, we choose 5100 Ω as our R_1 and 3300 Ω as our R_2 . The following is the detail of our calculation:

$$Vbatt_{max} = 8.4 V$$

$$V_{ADC} = 3.3 V$$

$$R_1 = (8.4 V - 3.3 V) \times 1000 = 5.1 \times 1000 = 5100 \Omega$$

$$R_2 = 3.3 V \times 1000 = 3300 \Omega$$

Voltage Sensor Acquisition Process

Moving Average

1. Obtain first data of input (k=3), after that calculate the output using these equations:

$$MA_{k=3} = \frac{1}{k} \sum_{i=n-(k-1)}^{k} V_i$$

- 2. Following this step, it is necessary to eliminate the earliest data and substitute it with current data before continuing with the computations
- 3. Perform this process constantly

Payload Tilt Sensor Summary (1/2)

Model	Interface	Resolution (bits)	Voltage (V)		DoF	Mass (g)	Size (mm)	Cost (\$)		
MPU6050	I2C	12	3.3		6 (3 gyro, 3 accel)	2.1	14 x 12 x 2	1.5		
Range)	Sensitivity	Data Format			(Tilt X, °)	(Tilt Y, °)			
Gyro (2000 Accelerometer	(16 G)	Gyro (14 bits) Accelerometer (14 bits)	Equation	Tilt X = tan $Tilt Y = at$		$X = tan\left(\frac{1}{\sqrt{A}}\right)$	$\tan\left(\frac{A_{y}}{\sqrt{A_{x}^{2}+A_{z}^{2}}}\right) \times \frac{180}{pi}$ $= a \tan 2(A_{x}, A_{z}) \times \frac{180}{pi}$			
MPU6050 🗸				A_y	= Raw data of 2 = Raw data of 2 = Raw data of 2	<i>X-axis acceler Y-axis acceler</i>	ometer ometer			
IMU sensor sense Gyroscope and Accelerometer values.			Sample Output		Tilt :		Tilt X :2.65 Tilt X :2.57 Tilt X :2.52			

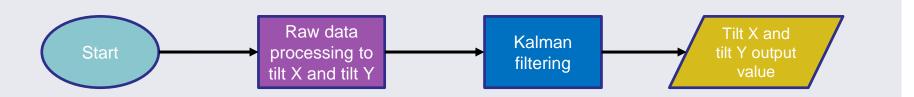
Sample output in packet data:

1085,15:00:10.01,100, F, LAUNCH_WAIT,100.1, P, C, M, 30.0,100.1, 3.1,00:09:02,100.2,17.0199,189.0077,7,1.12,2.12, CXON,,127

Sensor Settings

We are using our custom library to initialize and take sensor readings. The sensor settings are:

- Sensor Wake Up Register
- Data Rate
- Accelerometer Config
- Gyroscope Config


: +/- 2 G

: 0x6B

: 25 Hz

: +/- 250 degree/second

Tilt Sensor Acquisition Process

Kalman Filter

1. Obtain input (U), after that calculate \hat{U}_{k+1} using these equations:

$$k = \frac{P \cdot H}{H^2 \cdot P + R}$$
$$\widehat{U}_{k+1} = k \cdot (U - H \cdot \widehat{U})$$
$$P = (1 - k \cdot H) \cdot P + Q$$

2. The \hat{U}_{k+1} is the output of Kalman Filter

Camera Summary

Model	Interface	Resolution (Pixels)	Voltage (V)	Frame Rate (fps)	View Angle (°)	Mass (g)	Size (mm)	Cost (\$)
Quelima SQ11	Digital	1280 x 720	5	30	120	5.2	23 x 23 x 23	4.53
Quelima SQ11 √Image: Note:We removed the camera from the case, because we designed our own camera case				Quality	Video Length Frame width Frame heigh Data rate Total bitrate Frame rate	t 7 t 9	00:00:25 1280 720 9966kbps 10222kbps 30.00 frames/second	
Availa	to r Reas	ninimize its size son with high resol	€.	Output Camera				

Bonus Camera Summary

Model	Interface	Resolution (Pixels)	Voltage (V)	Frame Rate (fps)	View Angle (°)	Mass (g)	Size (mm)	Cost (\$)
Quelima SQ11Digital1280 x 7205		5	30	120	5.2	23 x 23 x 23	4.53	
Quelima SQ11 √Image: Note: We removed the camera from the case, because we designed our own camera case			case, igned case	Quality	Video Length Frame width Frame heigh Data rate Total bitrate Frame rate	i 1 it 7 9	0:00:25 280 20 966kbps 0222kbps 60.00 frames/second	
to minimize its size. Reason Small size camera with high resolution Availability of SD card slot Wide angle lens				Output Camera				

Descent Control Design

Artaka Sunu Adhi Prasetya

Descent Control Overview

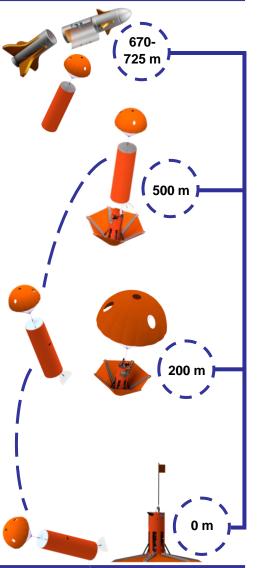
Material: Polycarbonate, Fiberglass Composite, ABS+.

Dimension: 397.00 mm in height and 120.8 mm in diameter.

Feature: Parachute attachment using Eye bolt, The 3D Printed holder can keep the payload at the stowed position.

Material: ABS+, Fiberglass Composite. Dimension: 226.40 mm in height, 90 mm in diameter of the body, and 310 mm in diameter of the heatshield Feature: DC motor and Leadscrew Mechanism

Parachute


Container Parachute Material: Orange Ripstop Nylon Dimension: 222 mm in diameter Feature: Spill hole and side hole as stabilizer with 22.2 mm in diameter. Payload Parachute

Material: Orange Ripstop Nylon Dimension: 547 mm in diameter Feature: Spill hole and side hole as stabilizer with 54.7 mm in diameter. The container separates from the rocket at an altitude of 670-725 meters. The container will descent at a rate of 15 m/s using a parachute above the container.

At an altitude of 500 meters, the payload will be released from the container and open a heat shield that will also be used as an aerobraking device, with a descent rate of 20 m/s or less.

At an altitude of 200 meters, the parachute will be released from the payload. It will make the descent at a rate of 5 m/s

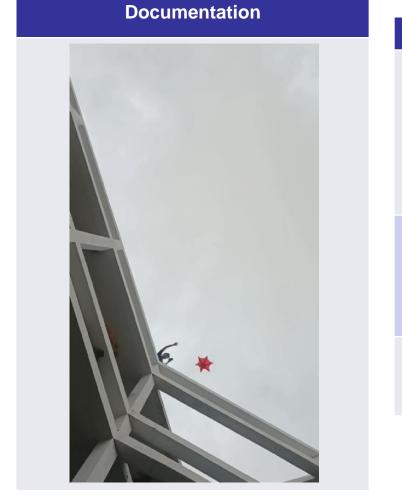
The payload lands and after upright itself the payload raises a flag 500 mm above the base of the payload.

Descent Control Changes Since PDR (2/4)

Descent Rate of Parachute Prototype Testing

Documentation	Container Parachute Descent		
	Goal	The CanSat shall descend using container parachute. Container Parachute at a rate of 15 m/s.	
	Procedure	 The parachute was tied to the dummy CanSat with a mass of 700 g. The object was dropped 12.76 m from the building. Observe and measure time elapsed for the object land. 	
	Result	It takes time to be fully stable descend with a descent rate of ±15 m/s using the container parachute.	

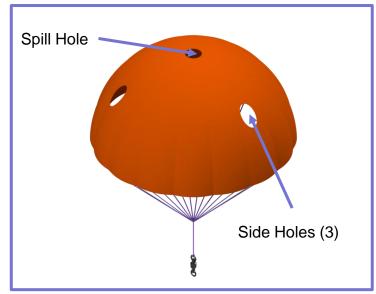
Descent Control Changes Since PDR (3/4)


Descent Rate of Parachute Prototype Testing

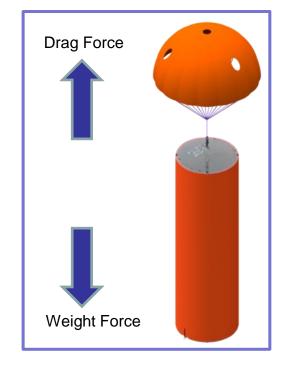
Documentation	Payload Parachute Descent		
	Goal	The second parachute is able to release from payload after the rubber released and the descent rate is 5 m/s.	
	Procedure	 Observe the payload parachute is able to release from the payload using rubber locking system. Drop the payload prototype from top of building (21.5 m). Observe and measure time elapsed for the object land. 	
	Result	The payload parachute can release from the payload using rubber locking system. It takes time to be fully stable descend with a descent rate of 5 m/s using the payload parachute.	

CENT X

Payload Aerobraking Prototype Testing


Payloa	Payload Aerobraking Descent				
Goal	The Payload shall open Heat shield that will be used aerobraking with descent rate is 20 m/s or less.				
Procedure	 The payload was dropped from the top of building (21.5 m) with an angle 45 degree. Observe and measure the time elapsed for the object to land. 				
Result	The prototype was able to fully descend with a descent rate of ± 14.56 m/s.				

Container Descent Control Hardware Summary (1/4)


Container Descent Control Hardware

Size: Ø 222 mm Key Design: Round Parachute Color Selection: Orange Spill Hole diameter: 22.2 mm Side Holes diameter: 22.2 mm

How Container Descent Control Hardware Works

We use parachute to maintain the descent control of the container. The parachute is lifted by the drag force in order to achieve the desired rate of descent.

Container Descent Control Hardware Summary (2/4)

Passive Component of Container Descent Control Hardware

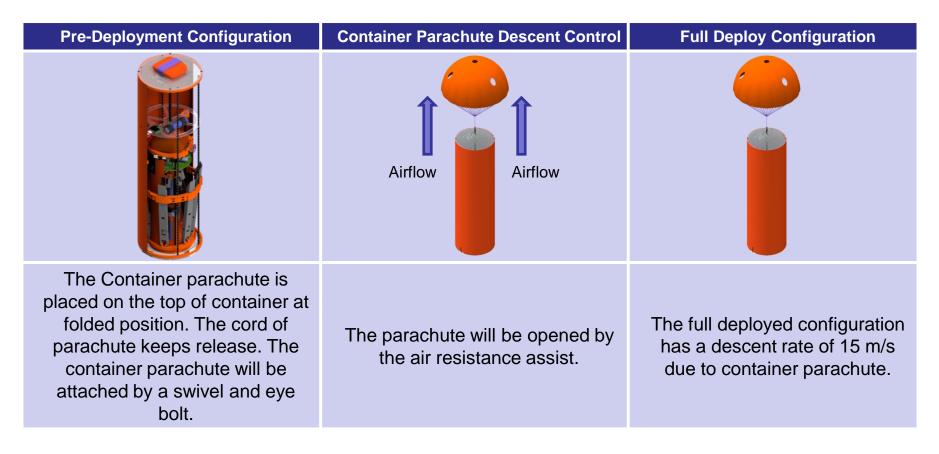
Key Design Considerations :

- The type of parachute are round parachute with spill hole and three side holes
- The container focuses mass at the bottom

Color Selection:

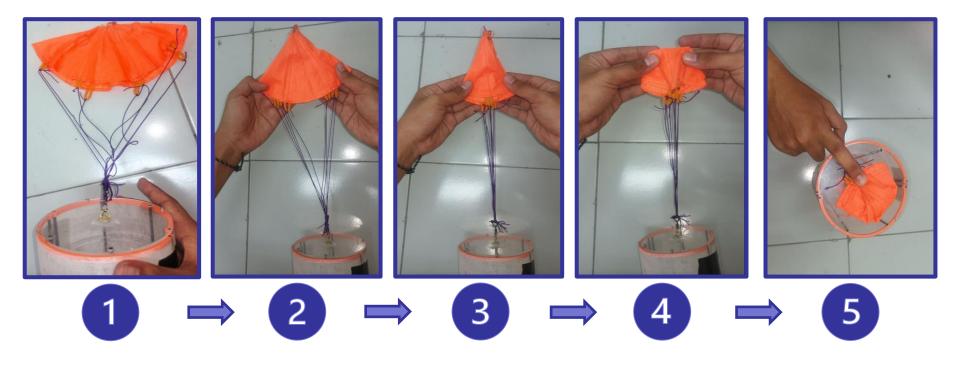
- Parachute is using orange ripstop nylon
- The cover of container's is orange fiberglass composite
- · Lids are using transparent Polycarbonate

Passive Component:


• The container's parachute is attached to container by a swivel and an eyebolt

Container Descent Control Hardware Summary (3/4)

How Container Descent Control Hardware Stowed and Works



Container Descent Control Hardware Summary (4/4)

Container Parachute Stowed Representation

Information

The container parachute will be outside container and attached to the top frame of the container. It will open as soon as deployed from the rocket. In order to open easily and quickly when the parachute exposed to air, it will be fold as shown in picture.

Payload Aerobraking Descent Control Hardware Summary (1/3)

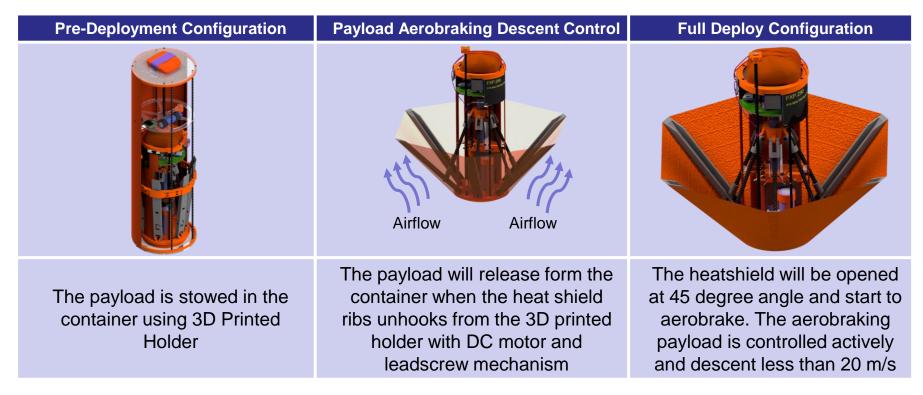
Active Component of Payload Descent Control Hardware

Key Design Considerations :

- The payload focuses mass at the bottom to maintain the nadir direction and prevent the payload from swaying
- A cone-shaped nose is often used in vehicle design to reduce the drag caused by air resistance and improve aerodynamic efficiency

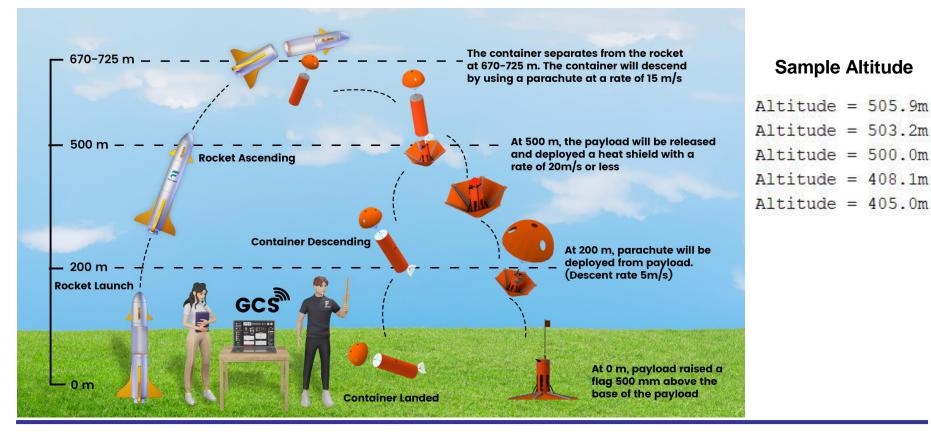
Color Selection:

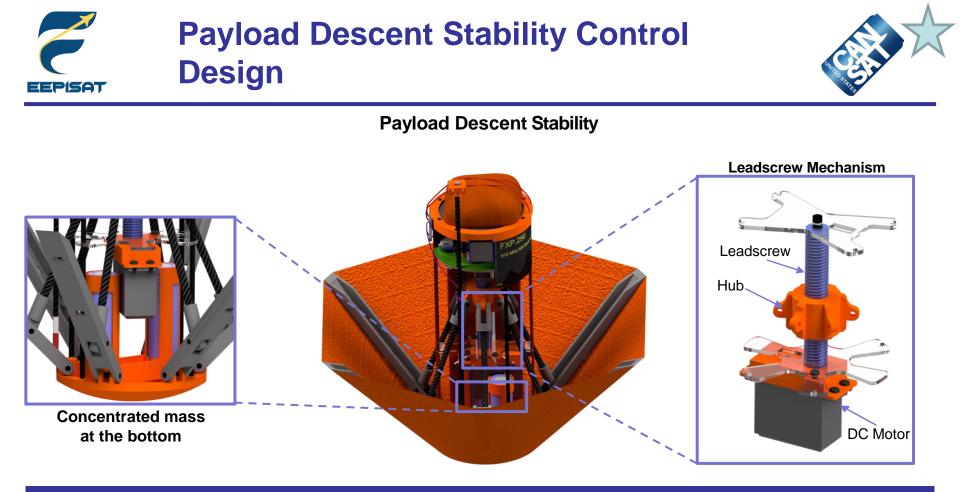
- Heatshield material is using orange ripstop nylon
- The cover of payload is orange fiberglass composite **Active Component:**
- DC motors and leadscrew mechanisms are used to adjust the angle of the heat shield to maintain the descent rate (typically 45 degree).


Component Sizing:

- Heat shield area : 840.78 cm^2
- Heat shield radius : 155 mm

How Payload Aerobraking Descent Control Hardware Stowed and Works




Payload Aerobraking Descent Control Hardware Summary (3/3)

Payload Sensors Operation Sequence

Payload altitude sensor will be measured to aid the descent control process. Altitude data is obtained from BME 280. If the altitude data reaches at 500m it will command to activate the DC motor to release the payload from the container. Then, DC motor will actively control the angle of the heatshield to keep the descent rate less than 20 m/s.

Information

Type of Stability: Active Control Description:

The payload is using leadscrew and DC motor to maintain descent stability. Other stability is maintained by placing major components at the bottom of the payload, so that the mass is focused at the bottom. This configuration helps to maintain the nadir direction and prevents the payload from swaying.

Payload Parachute Descent Control Hardware Summary (1/3)

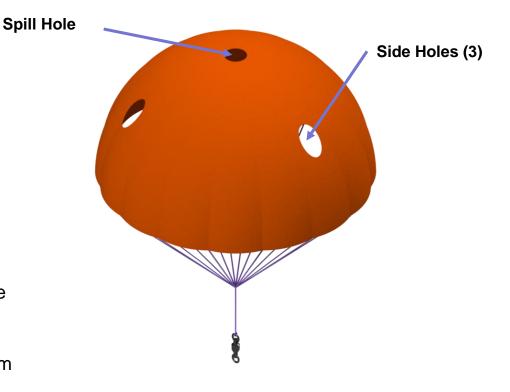
Active and Passive Component of Payload Parachute Descent Control Hardware

• The type of parachute are round parachute with a spill hole and three side holes

Color Selection:

• Parachute is using orange ripstop nylon

Passive Component:

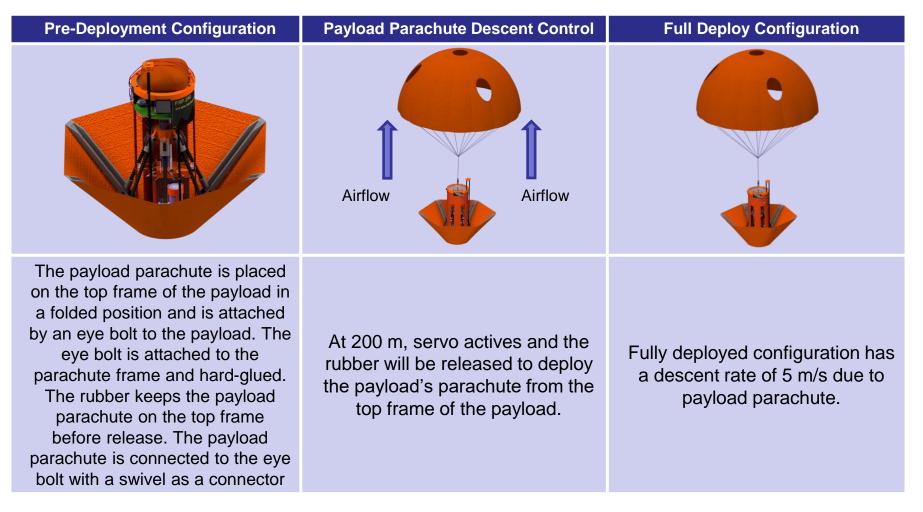

• The payload's parachute is attached to payload by a swivel and an eyebolt

Active Component:

• Servo is used to release a rubber which causes the payload to deploy the parachute

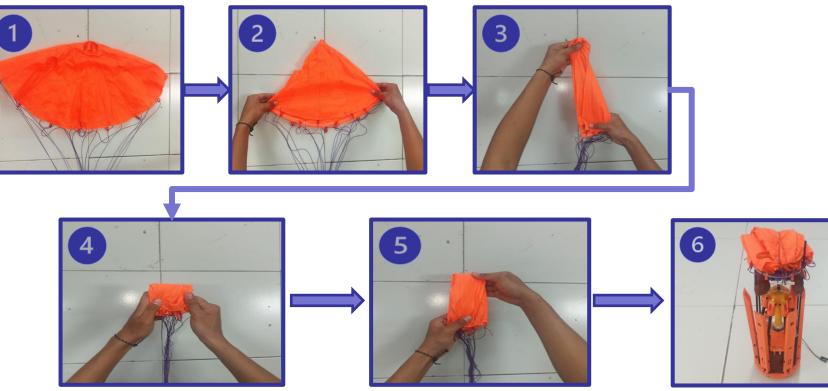
Component Sizing:

- Parachute diameter: 547 mm
- Spill hole and side holes diameter : 54.7 mm



Payload Parachute Descent Control Hardware Summary (2/3)

How Payload Parachute Descent Control Hardware Stowed and Works

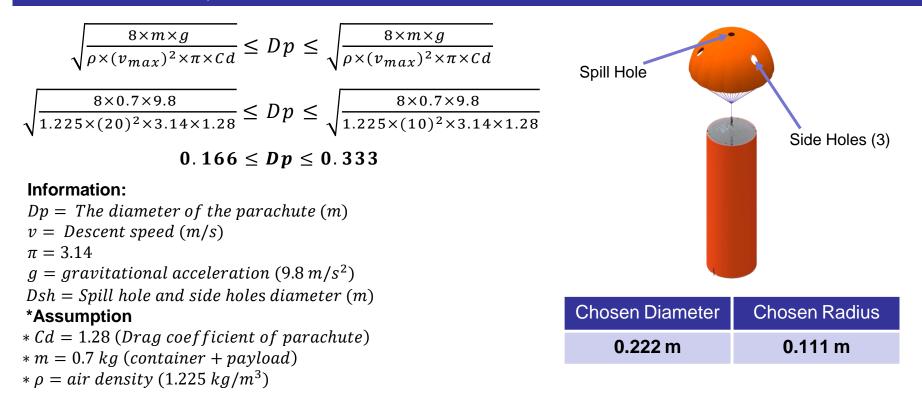


Payload Parachute Descent Control Hardware Summary (3/3)

Payload Parachute Stowed Representation

Information

The payload parachute is placed on the top frame of the payload in a folded position and attached by an eye bolt to the payload. The eye bolt is attached to the parachute frame and hard-glued. Rubber keeps the payload's parachute on the top frame before release. In order to open easily and quickly when the parachute exposed to air, it will be fold as shown in pictures above.


The descent rate of each descent phase will be estimated using different parameters **Container Parachute Payload Aerobraking Payload Parachute** Parameters: Parameters: Parameters: Diameter of Parachute (Dp) Diameter of Parachute (Dp) Radius of heat shield (Rhs) ٠ • Diameter of spill hole and side Diameter of spill hole and side ٠ holes (Dsh) holes (Dsh) Requirement: **Requirement:** Requirement: Descent rate of 20 m/s or less Descent rate of 15 m/s (\pm 5 m/s) Descent rate of 5 m/s (\pm 1 m/s)

Container Parachute

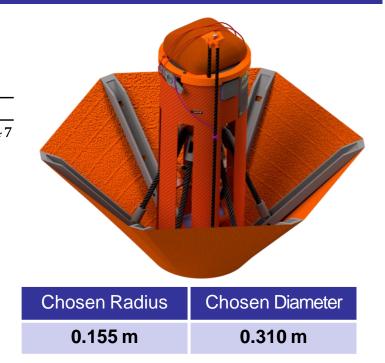
We use the range of descent velocity between minimum [V min = 10 m/s] and maximum [Vmax = 20 m/s] to determine diameter of parachute

Diameter of the spill hole and side holes is chosen to be 10% of the diameter of parachute Diameter of spill hole and side holes = $Dsh = Dp \times 10\% = 0.0222 \text{ m}$ Spill hole and side holes radius = $\frac{Dsh}{2} = 0.0111 \text{ m}$

Payload Heat Shield

We use the range of descent velocity between minimum [V min = 10 m/s] and maximum [Vmax = 20 m/s] to determine the radius of heat shield

$$\sqrt{\frac{2 \times m \times g}{\rho \times (v_{min})^2 \times \pi \times Cd}} \le Rhs \le \sqrt{\frac{2 \times m \times g}{\rho \times (v_{max})^2 \times \pi \times Cd}}$$
$$\sqrt{\frac{2 \times 0.47 \times 9.8}{1.225 \times (20)^2 \times 3.14 \times 0.47}} \le Rhs \le \sqrt{\frac{2 \times 0.47 \times 9.8}{1.225 \times (10)^2 \times 3.14 \times 0.47}}$$


 $0.112 \leq Rhs \leq 0.225$

Information:

Rhs = The Radius of the heat shield (m) v = Descent speed (m/s) $\pi = 3.14$ g = gravitational acceleration (9.8 m/s²)*Assumption * Cd = 0.47 (when heat shield deploy 45°) (Drag coefficient of heat shield)

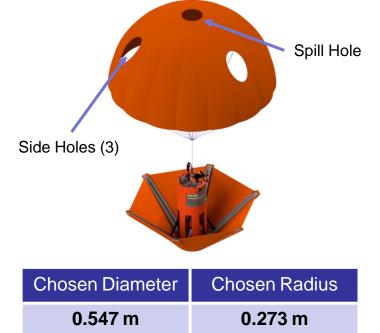
*m = 0.47 kg (payload)

 $* \rho = air \ density \ (1.225 \ kg/m^3)$

Payload Parachute

We use the range of descent velocity between minimum [V min = 4 m/s] and maximum [Vmax = 6 m/s] to determine diameter of parachute

$$\sqrt{\frac{8 \times m \times g}{\rho \times (v_{max})^2 \times \pi \times Cd}} \le Dp \le \sqrt{\frac{8 \times m \times g}{\rho \times (v_{max})^2 \times \pi \times Cd}}$$
$$\sqrt{\frac{8 \times 0.47 \times 9.8}{1.225 \times (6)^2 \times 3.14 \times 1.28}} \le Dp \le \sqrt{\frac{8 \times 0.47 \times 9.8}{1.225 \times (4)^2 \times 3.14 \times 1.28}}$$


$$0.45 \leq Dp \leq 0.68$$

Information:

 $Dp = The \ diameter \ of \ the \ parachute \ (m)$ $v = Descent \ speed \ (m/s)$ $\pi = 3.14$ $g = gravitational \ acceleration \ (9.8 \ m/s^2)$ $Dsh = Spill \ hole \ and \ side \ holes \ diameter \ (m)$ ***Assumption** $* Cd = 1.28 \ (Drag \ coefficient \ of \ parachute)$

* m = 0.47 kg (payload) $* n = air density (1.225 kg/m^3)$

* $\rho = air \ density \ (1.225 \ kg/m^3)$

Diameter of the spill hole and side holes is chosen to be 10% of the diameter of parachute Diameter of spill hole and side holes = $Dsh = Dp \times 10\% = 0.0547 \text{ m}$ Spill hole and side holes radius = $\frac{Dsh}{2} = 0.0273 \text{ m}$

Descent Rate Estimates (5/6)

Information						
Container mass : 225.6 g Payload mass : 474.7 g Total mass : 700.3 g						
CanSat (Container + Payload) Descent Rate	Payload Aerobraking Descent Rate	Payload Parachute Descent Rate				
$\boldsymbol{v} = \sqrt{\frac{8 \times m \times g}{\rho \times (Dp)^2 \times \pi \times Cd}}$	$\boldsymbol{v} = \sqrt{\frac{2 \times m \times g}{\rho \times (Rhs)^2 \times \pi \times Cd}}$	$\boldsymbol{v} = \sqrt{\frac{8 \times m \times g}{\rho \times (Dp)^2 \times \pi \times Cd}}$				
$\boldsymbol{v} = \sqrt{\frac{8 \times (0.7) \times (9.8)}{1.225 \times (0.222)^2 \times (3.14) \times (1.28)}}$	$\boldsymbol{v} = \sqrt{\frac{2 \times (0.47) \times (9.8)}{1.225 \times (0.155)^2 \times (3.14) \times (0.47)}}$	$\boldsymbol{v} = \sqrt{\frac{8 \times (0.47) \times (9.8)}{1.225 \times (0.547)^2 \times (3.14) \times (1.28)}}$				
$\boldsymbol{v}=$ 15.03 m/s	v = 14.56 m/s	$\boldsymbol{v}=5.00\ m/s$				

Final Result

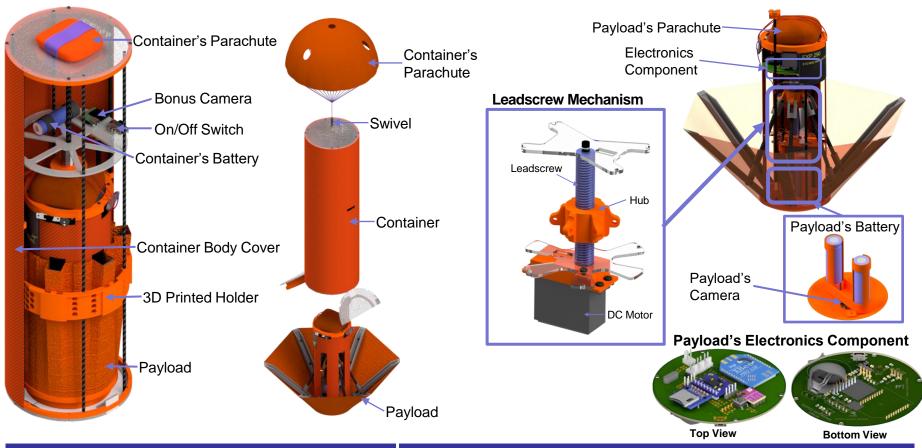
Parachute and Heat Shield Summary					
Altitude	The descent rate each descent phase will be estimated using parameters				
725-500 m	Type parachute: Round parachute The diameter of container parachute: 0.222 m Spill hole diameter: 0.0222 m The descent speed: 15.03 m/s				
500-200 m	The radius of heat shield: 0.155 m The descent speed: 14.56 m/s				
200-0 m	Type parachute: Round parachute The diameter of payload parachute: 0.547 m Spill hole diameter: 0.0547 m The descent speed: 5.00 m/s				
	Container Summany				

Container Summary

The container has a parachute to manage descent control. The parachute has a spill hole and three side holes to improve stability and maintain nadir direction.

Payload Summary

The payload is using active control of aerobraking descent rate. DC motor and leadscrew mechanism are used to maintain the heat shield angle. The mass is focused at the bottom of the payload to keep stability and prevent from swaying.


Mechanical Subsystem Design

Artaka Sunu Adhi Prasetya

Mechanical Subsystem Overview

Container	Payload		
Material: Polycarbonate, ABS+, Fiberglass Parachute: Ripstop Nylon Note: The container has a parachute	Material: ABS+, Polycarbonate, Fiberglass Parachute: Ripstop Nylon Note: The payload will be actively controlled by DC motor and leadscrew mechanism. The payload has a parachute		

Presenter: Artaka Sunu Adhi Prasetya

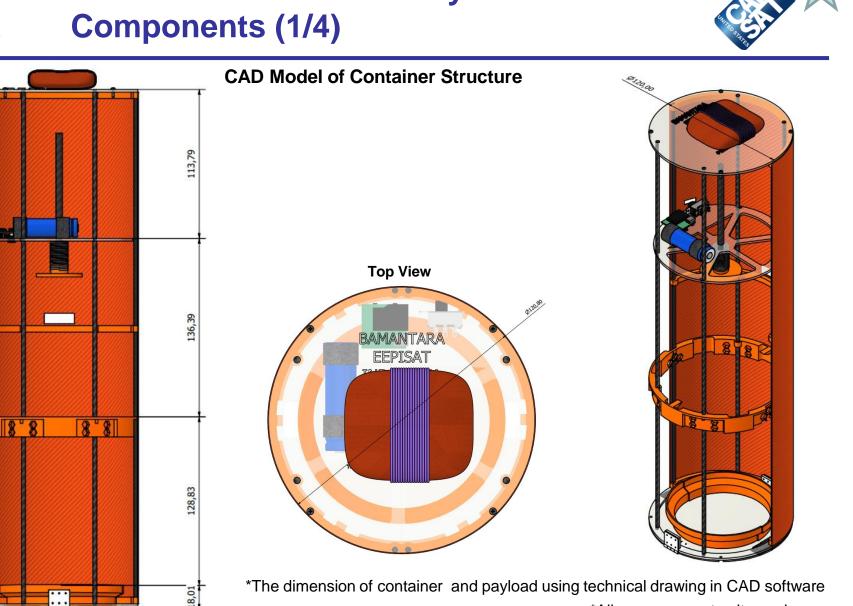
Mechanical Subsystem Changes Since PDR (1/3)

	Part	PDR	CDR	Rationale
Container	3D Printed Holder	Long 3D Printed holder	Shortened 3D Printed holder	Decrease mass
	Bottom Lid Locking Mechanism	Door with torsion spring	Velcro Locking door	Easy manufacturing process
	Bottom Holder	It doesn't exist	Bottom holder	To prevent the payload from getting stuck in the container when release
	Material of Container	Frame : Acrylic	Frame : Polycarbonate	Greater strength, Lightweight

Mechanical Subsystem Changes Since PDR (2/3)

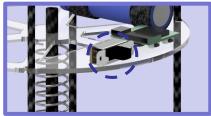
	Part	PDR	CDR	Rationale
Payload	DC Motor Bracket	Compatible with small motor and gearbox	Compatible with bigger motor and gearbox	The new version provides more torque to reduce the risk of stuck
	Flagpole Holder	Spring Without Holder	Spring With Holder	More sturdy and increase durability of Flagpole Holder
	Battery Holder	Horizontal Position	Vertical Position	Adapted to the new version of DC motor and gearbox

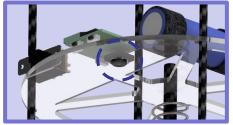
Mechanical Subsystem Changes Since PDR (3/3)



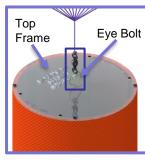
	Part	PDR	CDR	Rationale
Payload	Material of Payload	Leadscrew : Teflon	Leadscrew : eResin-PLA	Easy to shape and smoother surface
		Hub : ABS+	Hub : eResin-PLA	Easy to shape and smoother surface
		Frame : Acrylic	Frame : Polycarbonate	Greater strength, Lightweight

397,00

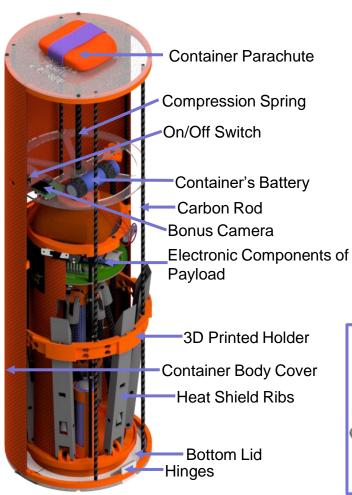

Container Mechanical Layout of



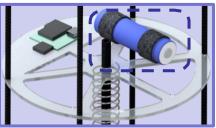
Container Mechanical Layout of Components (2/4)



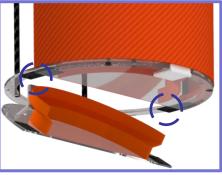
On/Off Switch



Bonus Camera

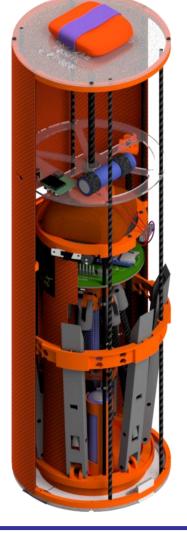


Attachment Point


Container Major Parts and Components

Container's Battery

3D Printed Holder


Velcro Locking System

Container Mechanical Layout of Components (3/4)

Container Design Key Features

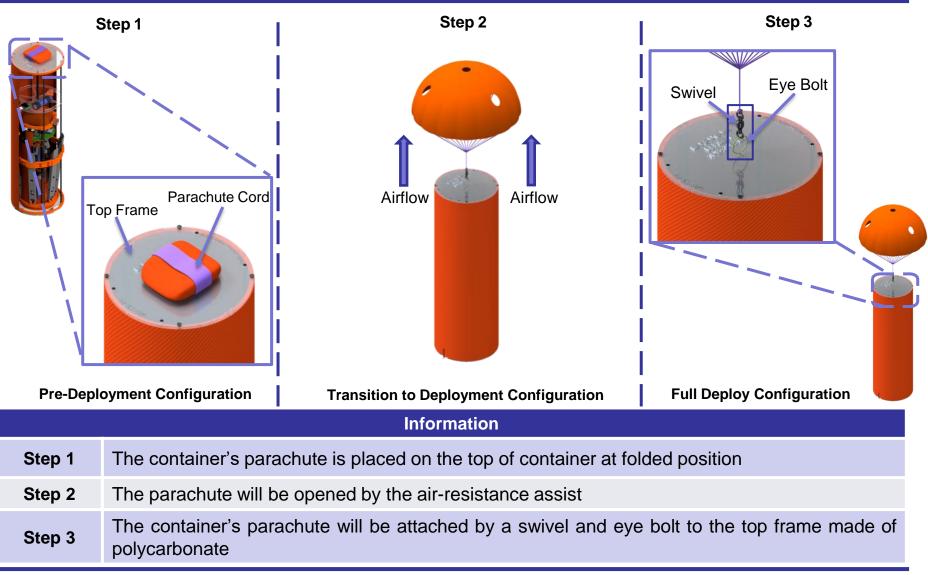
Structure and material

- Most of container material using fiberglass composite, Polycarbonate, ABS+, and carbon rod (Ø 3 mm)
- The body cover of container was assembled from the fiberglass composite, carbon rod (Ø 3 mm), and ABS+
- The carbon rod in the body cover acts as support to provides rigidity of the body cover
- Inside the container, the payload secured by 3D printed holder made of ABS+
- Container fully encloses the science payload
- Rounded edges (No sharp edges)

Functional part

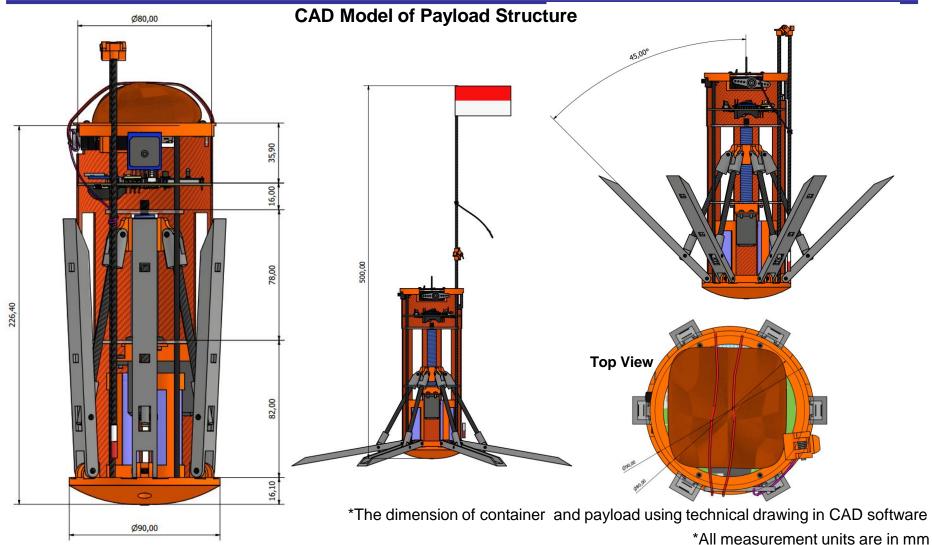
- The 3D Printed holder will be used to prevent shock and vibration of the payload
- Compression Spring is used to pushes down the payload when released

Container Mechanical Layout of Components (4/4)

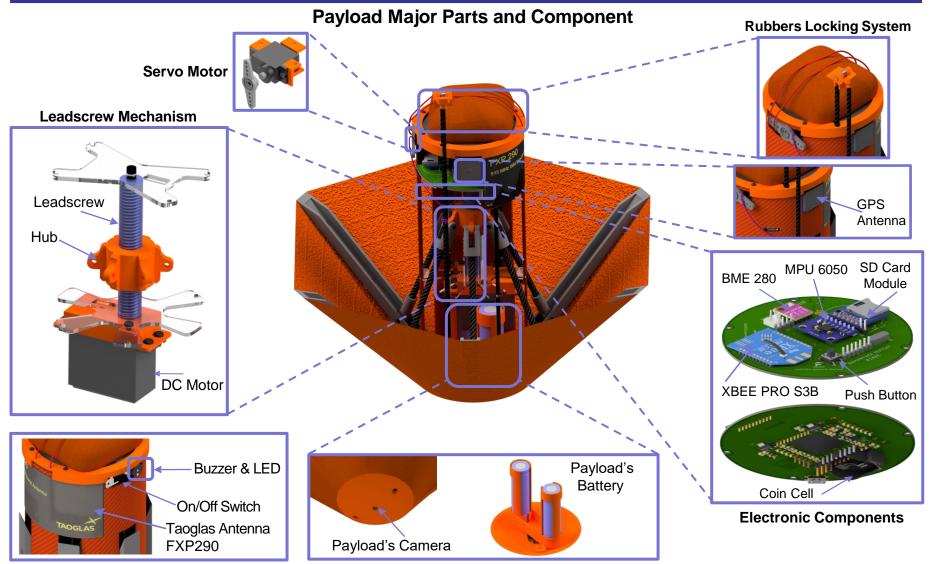


Structural Material Material Part 3 [1] Top Frame [4] Spring Holder Frame 8 4 Polycarbonate [7] Bottom Lid Frame and Bottom Lid [2] Container Body Fiberglass Composite Covers 5 [3] Body Cover Frame ABS+ 3D Printing [5] Payload Holder [6] Longeron Carbon Rod [8] Spring shoe 6

Container Parachute Attachment Mechanism



Payload Mechanical Layout of Components (1/4)

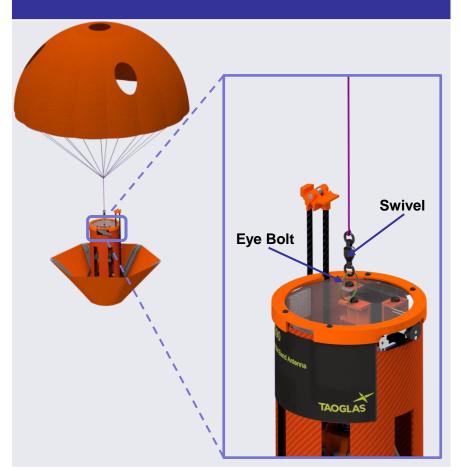


Payload Mechanical Layout of Components (2/4)

Presenter: Artaka Sunu Adhi Prasetya

Cansat 2023 CDR: Team 1085 Bamantara EEPISAT

Payload Mechanical Layout of Components (3/4)

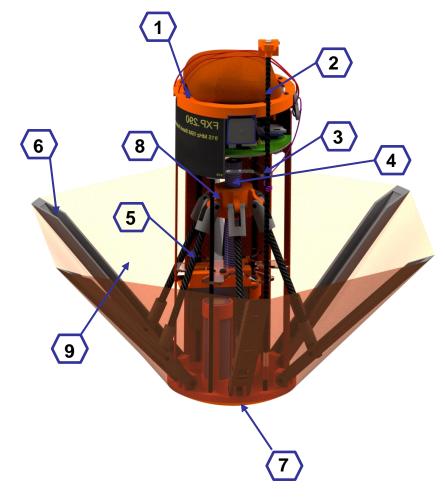

Payload Design Key Features

- Most of payload material will be made of ABS+, fiberglass composite, Polycarbonate and carbon rod (Ø 3 mm)
- The body cover of payload was assembled from the fiberglass composite
- The carbon rod in the body cover acts as support to provides the rigidity of body cover
- The payload shape like an upside down umbrella
- Payload's heatshield are made of Orange Ripstop Nylon
- Leadscrew and Hub are made of eResin-PLA

Functional part

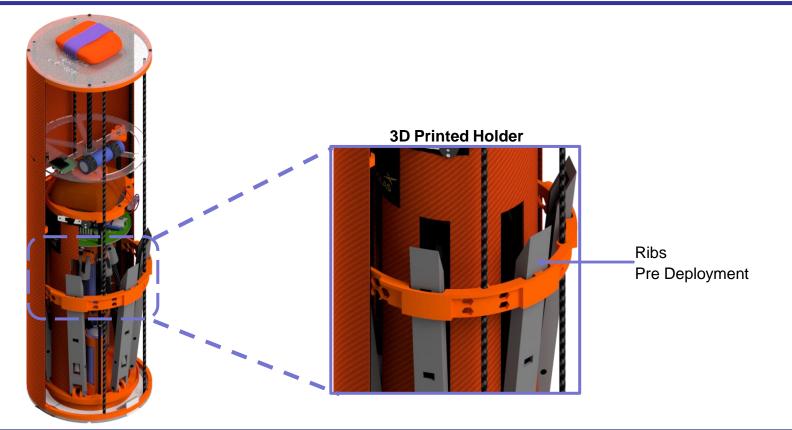
- Electronic component such as servo are used to release parachute and flag
- DC Motor and leadscrew mechanism are used to adjust the heatshield angle

Attachment Point of Payload



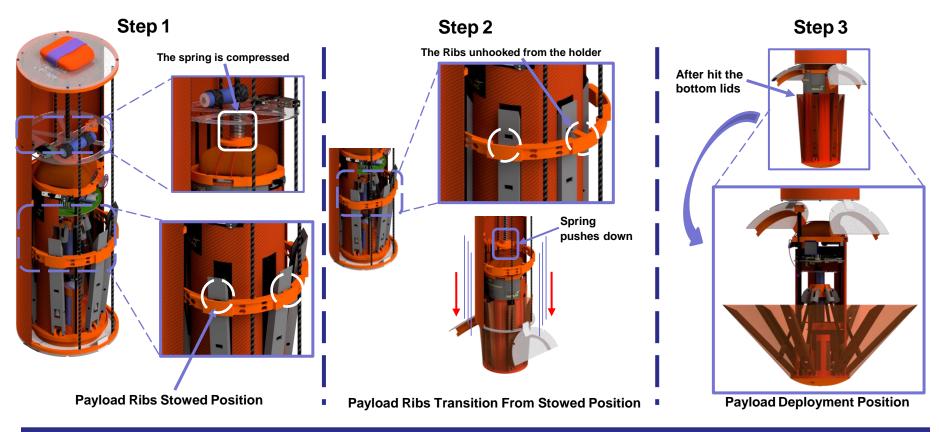
Payload Mechanical Layout of Components (4/4)

Structural Material



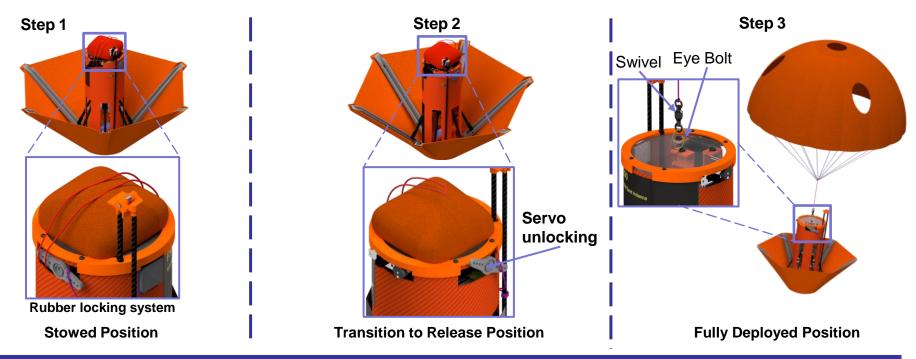
Part	Material
[1] Parachute Frame [3] Middle-top frame	Polycarbonate
[2] Longeron and Flagpole [5] Rib's Connector	Carbon Rod
[4] Leadscrew [8] Hub	Resin 3D Printing
[6] Heatshield Ribs [7] Payload Nose	ABS+ 3D Printing
[9] Heat shield	Parachute Fabric (Ripstop Nylon)

Payload Pre Deployment Configuration


Information

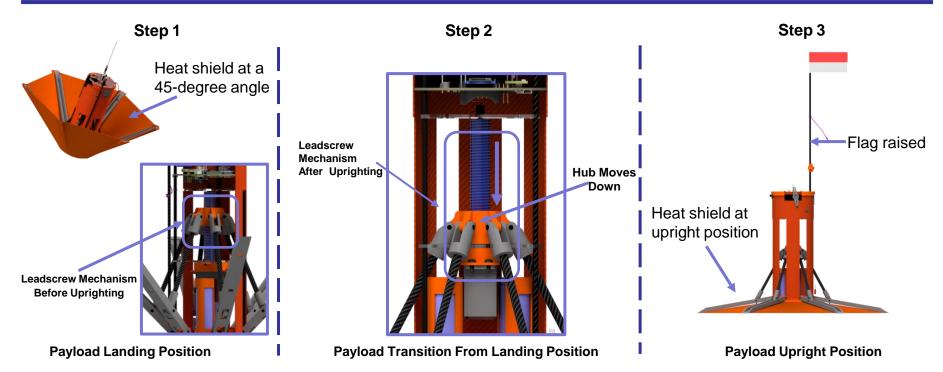
- 1. The 3D printed holder will be made of ABS+
- 2. Holder is used to reduce the shock and prevent shifting while the payload is stowed
- 3. The holder has a shape that matches with the payload shape
- 4. In the pre-payload deployment condition, the ribs will hook onto the holder to lock the payload into position

Payload Aerobraking Deployment Configuration


Information

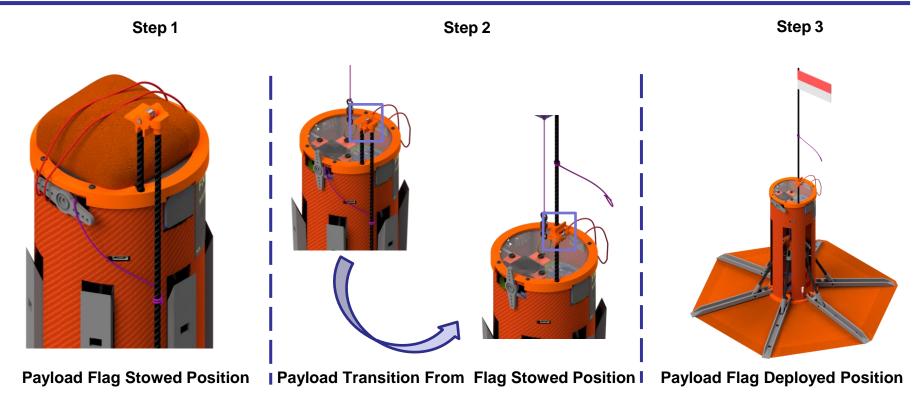
The payload will be released when the heat shield ribs unhooks from the 3D printed holder with DC motor and leadscrew mechanism. After the ribs is unhooked from the holder, the spring in the container will push the payload out from the container. After that, DC motor will rotate to moves the hub downward to open up the heat shield.

Payload Parachute Deployment Configuration


Information

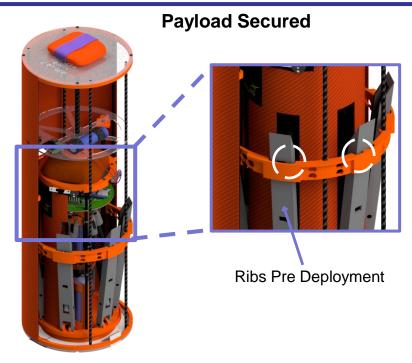
Step 1	The payload parachute is placed on the top frame of the payload in a folded position and is attached by an eye bolt to the payload. The eye bolt is attached to the parachute frame and hard-glued. The rubber keeps the payload parachute on the top frame before release. The payload parachute is connected to the eye bolt with a swivel as a connector
Step 2	At 200 m, servo actives and the rubber will be released
Step 3	After the rubber is released, the payload parachute deployed from the payload

Payload Uprighting Description



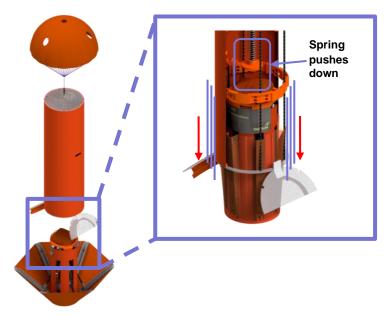
Information	n
Step 1	The payload, which landed on the ground, uses a leadscrew mechanism to upright itself
Step 2	The leadscrew rotates to move the hub downward to adjust the heat shield ribs to upright position
Step 3	After the hub moved downward, the payload is in an upright position. Then, the servo is activated to release a cord that raises the flag

Payload Flag Deployment Configuration


Information

The flagpole will be attached by a 3D-printed holder to connect to the carbon rod. The flag (made from fabric) will be sewn and securely glued to the carbon rod. After the payload is in an upright position, the servo is activated to release a cord that raises the flag 500 mm above the base of the payload. The torsion spring causes a rotation of the flagpole from the stowed position to the deployed position.

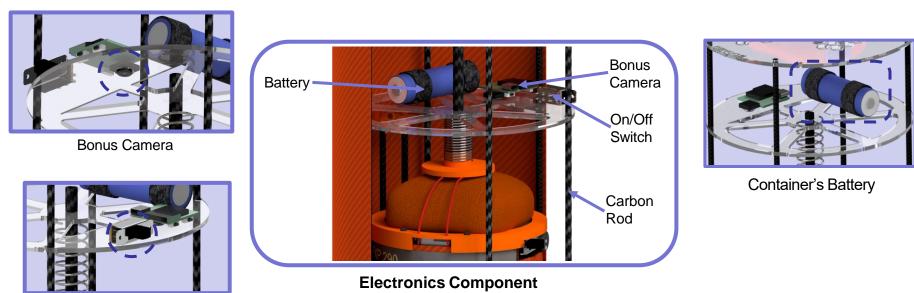
Container Payload Mount



Information

Payload is secured inside container using 3D printed holder. The holder is used to reduce the shock and prevent shifting while the payload is stowed.

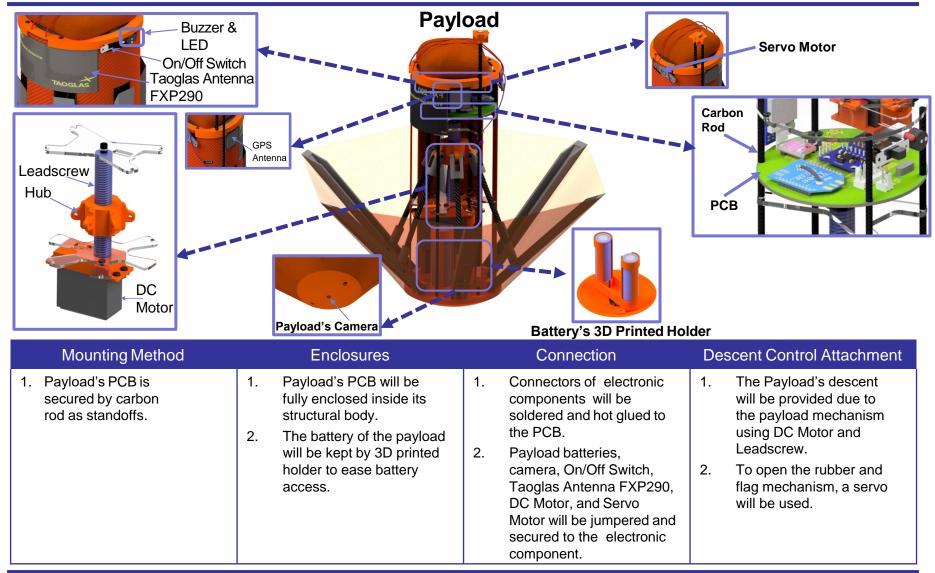
Payload Mechanical Deployed Configuration


Information

Payload can be deployed when the heat shield ribs unhooks from the 3D printed holder with DC motor and leadscrew mechanism. After the ribs is unhooked from the holder, the spring in the container will push the payload out from the container.

Structure Survivability (1/3)

Mounting Method	Enclosures	Connection	Descent Control Attachment
 Container's battery is mounted using battery strap 	 The battery of the container, bonus camera, On/Off Switch is fully enclosed inside its structural body 	 Bonus camera and On/Off Switch will be jumpered and secured to the battery 	 The descent rate of the container will be provided by the parachute connected to the swivel and eye bolt.


Container

On/Off Switch

Structure Survivability (2/3)

Acceleration and Shock Forces Requirements Testing

Documentations

Requirement

CanSat survived given acceleration and shock force from 61cm feet attached to Cord. No electrical mounts disconnected, no parts falling off and no separation.

Testing

- 1. Attach 61cm cord to first parachute
- 2. Add a floor mat or pillow below the test fixture
- 3. Drop the CanSat
- 4. Observe if any parts of the CanSat fall apart

Results

The CanSat did not lose power. Inspect for any damage, or detached parts and verify telemetry is still being received.

Mass Budget (1/4)

	Container-Electrical Component				
Component	Quantity	Determination	Mass Unit (g)	Mass (g)	Margins (g)
Soshine 14500 Battery	1	Measured	21	21	
Quelima SQ11	1	Measured	3.9	3.9	
Cable and Connector	2	Measured	2.3	4.6	
On/Off Switch	1	Measured	2	2	
Total Mass Electrical Component of Cont	ainer			31.5	0
	Conta	iner-Structural Comp	oonent		
Component	Quantity	Determination	Mass Unit (g)	Mass (g)	Margins (g)
Top Frame	1	Measured	24.9	24.9	
Bottom Lid Frame	1	Measured	4.9	4.9	
Bottom Lid	2	Measured	15.6	31.2	
Spring Holder Frame	1	Measured	11.9	11.9	
Carbon Rod 397 mm	8	Measured	4.3	34.4	
Hinges	2	Measured	0.6	1.2	
Parachute	1	Measured	6.3	6.3	
Container's Body Cover	2	Estimated	28.5	57	11.4
3D Printed Holder	1	Measured	13.5	13.5	
Compression Spring	1	Measured	3.7	3.7	
Bolt	8	Estimated	0.1	0.8	0.16
Spring Shoe	1	Measured	4.3	4.3	
Total Mass Structural Component of Container 194.1 11.56					

Note: Due to the complexity of overall system, mass estimation is derived from the 20% of its estimated value.

Presenter: Artaka Sunu Adhi Prasetya

Mass Budget (2/4)

Payload-Electrical Component					
Component	Quantity	Determination	Mass Unit (g)	Mass (g)	Margins (g)
Olight 18650 Battery	2	Measured	49.5	99	
STM32F407VGT6	1	Estimated	2	2	0.4
MG90 Servo Motor	1	Measured	14.6	14.6	
MPU 6050	1	Measured	1.6	1.6	
XBEE Pro S3B	1	Measured	6.4	6.4	
BN-220	1	Measured	5.6	5.6	
BME280	1	Measured	1	1	
Taoglas Antenna FXP290	1	Measured	1.5	1.5	
Buzzer	1	Measured	5	5	
DC Motor	1	Measured	50	50	
On/Off Switch	1	Measured	2	2	
Limit Switch	2	Measured	0.5	1	
Quelima SQ11	1	Measured	3.9	3.9	
PCB	1	Measured	13.7	13.7	
SD Card Module	1	Measured	1.5	1.5	
3 mm LED	1	Measured	0.4	0.4	
Coin Cell Battery	1	Measured	4	4	
Cable and Connector	6	Measured	2.3	13.8	
Driver Motor MX	1	Measured	4	4	
Total Mass Structural Component of Payload 230.4 0.4					0.4

Note: Due to the complexity of overall system, mass estimation is derived from the 20% of its estimated value.

Presenter: Artaka Sunu Adhi Prasetya

Mass Budget (3/4)

Payload-Structural Component					
Component	Quantity	Determination	Mass Unit (g)	Mass (g)	Margins (g)
Payload's Body Cover	1	Estimated	28.4	28.4	5.68
Carbon Rod 216 mm	4	Measured	2.3	9.2	
Parachute Frame	1	Measured	10.9	10.9	
Rubber	2	Measured	0.3	0.6	
Payload Middle-top frame	1	Measured	4	4	
Payload Middle-bottom frame	1	Measured	5.1	5.1	
Payload's Nose	1	Measured	27	27	
Leadscrew	1	Measured	5.8	5.8	
Hub	1	Measured	11.7	11.7	
Parachute	1	Measured	38.3	38.3	
Ribs Assembly	6	Measured	12.1	72.6	
Heat Shield	1	Measured	6.8	6.8	
DC Motor Bracket	1	Measured	4.5	4.5	
Torsion Spring	1	Measured	0.3	0.3	
Carbon Rod 250 mm (Flagpole)	1	Measured	3.8	3.8	
Battery Holder	1	Measured	9.2	9.2	1.84
Flag	1	Estimated	1	1	0.2
Bolt	15	Estimated	0.1	1.5	0.3
Servo Holder	1	Measured	3	3	
Fotal Mass Structural Component of Payload 243.7 8.02					8.02

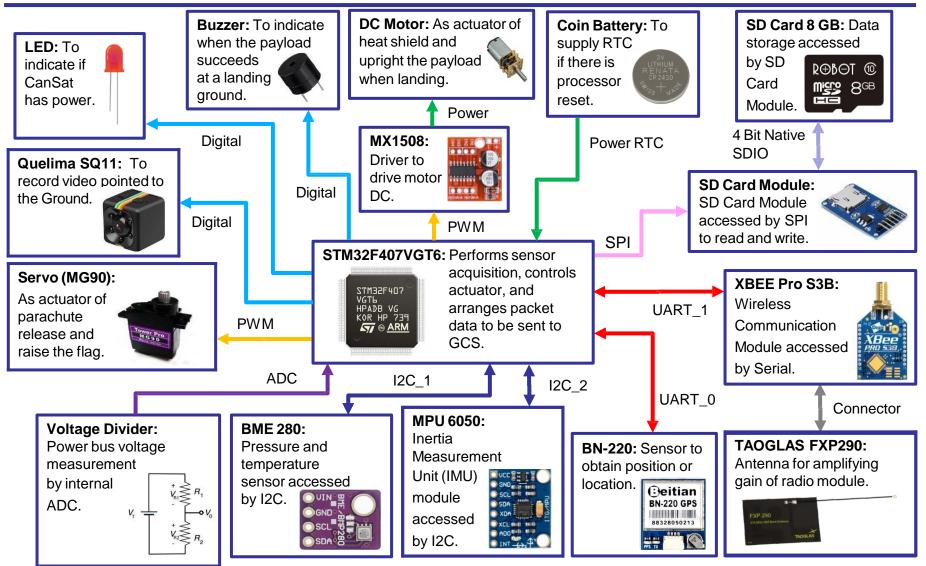
Note: Due to the complexity of overall system, mass estimation is derived from the 20% of its estimated value.

Presenter: Artaka Sunu Adhi Prasetya

RN 1: Total mass of the CanSat (science payload and container) shall be 700 grams ±10 grams

Total Mass				
Container	225.6 ± 11.56 g			
Payload	474.7 ± 8.42 g			
Total Mass of All System	700.3 ± 19.98 g			

Margin			
Mass Competition Requirement – Total Mass of All System = Margin 700 – 700.3 = -0.3 g (Fulfill Mass Tolerance) Uncertainties = ± 19.98 g			
Correction Method (Margin Competition ± 10 g)			
If total mass system < 690 grams	We will increase the mass of materials using higher infill density of 3D printed material for container or payload.		
If total mass system > 710 grams	We will change the material with lighter material such as composite that has lower density for container and payload.		


Communication and Data Handling (CDH) Subsystem Design

Achmad Bagus Okto Faerizqi

CDH Overview

Payload Processor & Memory Selection (1/2)

Model	Processor	Operating	Data Interfaces (Types &		Memory
	Speed (MHz)	Voltage (V)	Numbers)		Storage
STM32F407VGT6 Minimum System	168	3.3	Digital Pin (82) PWM Pin (12)	Serial Pin (6) SPI Pin (3) I2C Pin (3)	EEPROM 4Kb Flash 1Mb RAM 192Kb

Data Bus Width (bit)	Power Consumption (mW)	Mass (g)	Size (mm)	Boot Time (s)	Cost (\$)
32	127.512	1.4	14 x 14	0.001	15.00

Selected Processor	Reasons
STM32F407 VGTL HPADB VG KOR HP 739 I @ ARM Minimum System I	 Fast boot time It's a powerful microcontroller with many GPIOs It's smaller and can be assembled to a customized minimum system

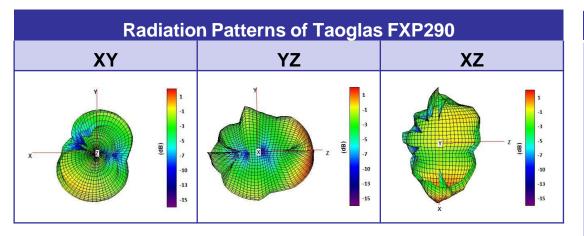
Payload Processor & Memory Selection (2/2)

Modal	Momony (CP)	Interface	Data Trans		
Model	Memory (GB)		Write (MB/s)	Read (MB/s)	Cost (\$)
ROBOT Micro SD	8	SD Card Interface	45	45	3.22

Selected Memory	Reasons
ROBOT Micro SD √	 Stable data transfer rate More reliable and easy to use It has a great performance

Payload Real-Time Clock

Model	Operating Voltage (V)	Operating Current	Reset Tolerance	Accuracy (ppm)	Cost (\$)
Built-in STM32F407VGT6	3.3	Built-in	In reset conditions, the software reads the last data from the RTC register value	± 20	0


Selected RTC	Reasons
0 0	 Minimize board size because it's included in STM32F407VGT6 No cost (included in STM32F407VGT6) Easy to use

Payload-to-Ground link

Model	Range (km)	Frequency (MHz)	Gain (dBi)	Connector	Size (mm)	Mass (g)	Cost (\$)
Taoglas FXP290	11.67	915	1.5	Micro FL	75.4 x 45.4	1.5	17.05

Selected Antenna

We have already test this antenna using several methods such as range test using vehicle. As the results are 2 km on average. Taoglas FXP290 ✓

Reasons

- Can be placed to XBEE using a small micro FL
- Lightweight and small
- Affordable

* The antenna is located at payload's body

Payload-to-Ground XBEE Radio Selection

Model		Supply Voltage (V)		Mass (g)	Frequency (N	/IHz)	Cost (\$)
XBEE Pro S	S3B	3.0 – 3.6		5.2	915		57.52
Range (km)	Sens	sitivity (dBm) Receive C		urrent (mA)	Transmit Currer (mA)	nt	Transmit Power (mW)
14		-107		26	215		250
Selected Radio					Reasor	ne	

Selected Radio	Reasons
XBEE Pro S3B √	 Highest sensitivity Better range than other XBEE We have experience working with this radio module

Overview of Radio Configuration

- As presented in the slide above we are using one "XBEE Pro S3B" for radio communication device from payload to GCS
- We are using NETID 1085 because our team ID is 1085

Transmission Control

- 1. The payload telemetry data will be transmitted to the GCS @1Hz
- 2. The payload will start sending data when commanded by GCS using command "CMD,1085,CX,ON"
- 3. The transmission of payload packet data will commence at the payload's LAUNCH_WAIT state. Before LAUNCH_WAIT state, the payload remains idle
- 4. When the CanSat landed, the payload will stop sending data to the GCS
- 5. If somehow the STM32F407VGT6 runs into reset, it will recover the last packet count from SD Card, so the packet counting doesn't reset

Payload Telemetry Format (1/2)

		Payload Telemetry Data
Data Format	Sample Data	Description
<team_id></team_id>	1085	The assigned team identification number. Our team ID is 1085
<mission_time></mission_time>	00:09:02.22	UTC time in format hh:mm:ss.ss, where hh is hours, mm is minutes, and ss.ss is seconds (including hundredth of second)
<packet_count></packet_count>	12	The total count of transmitted packets since turn on, which is to be reset to zero by command when the CanSat is installed in the rocket on the launch pad at the beginning of the mission and maintained through processor reset
<mode></mode>	F	The ASCII character 'F' for flight (the default mode upon system start) and 'S' for simulation
<state></state>	LAUNCH_WAIT	The operating state of the payload
<altitude></altitude>	100.1	The payload altitude in units of meters and must be relative to ground level. The resolution must be 0.1 meters
<hs_deployed></hs_deployed>	Р	The ASCII character 'P' indicates the payload with heat shield deployed, 'N' otherwise
<pc_delployed></pc_delployed>	С	The ASCII character 'C' indicates the payload parachute is deployed (at 200m), 'N' otherwise
<mast_raised></mast_raised>	М	The ASCII character 'M' indicates the flag mast has been raised after landing, 'N' otherwise
<temperature></temperature>	28.9	The payload temperature in units degrees Celsius. The resolution must be 0.1 degrees C
<voltage></voltage>	3.1	The payload power bus voltage in units volts. The resolution must be 0.1 V $$

Payload Telemetry Format (2/2)

		Payload Telemetry Data
Data Format	Sample Data	Description
<pre><pressure></pressure></pre>	100.1	The payload air pressure of the sensor used in units kPa. The resolution must be 0.1 kPa
<gps_time></gps_time>	00:09:02	The time generated by the GPS receiver. The time must be reported in UTC and have a resolution of a second
<gps_altitude></gps_altitude>	100.2	The altitude generated by the GPS receiver in meters above mean sea level with a resolution of 0.1 meters
<gps_latitude></gps_latitude>	17.0199	The latitude generated by the GPS receiver in decimal degrees with a resolution of 0.0001 degrees North
<gps_longitude></gps_longitude>	189.0077	The longitude generated by the GPS receiver in decimal degrees with a resolution of 0.0001 degrees West
<gps_sats></gps_sats>	5	The number of GPS satellites being tracked by the GPS receiver. This must be an integer number
<tilt_x, TILT_Y></tilt_x, 	1.12, 2.12	The angle of the CanSat X and Y axes in degrees, with a resolution of 0.01 degrees, where zero degrees is defined as when the axes are perpendicular to the Z axis which is defined as towards the center of gravity of the Earth
<cmd_echo></cmd_echo>	CXON	The fixed text command id and argument of the last received command with no commas
<checksum></checksum>	205	The checksum is total value each data packet is send to GCS at 1Hz, to correct the data receive

Payload Data Format will be transmitted @1 Hz to the GCS 1085,15:00:10.01,100,F,LAUNCH_WAIT,100.1,P,C,M,30.0,100.1,3.1,00:09:02,100.2,17.0199,189.0077,7,1.12,2.12,CXON,,205

Payload Command Formats (1/2)

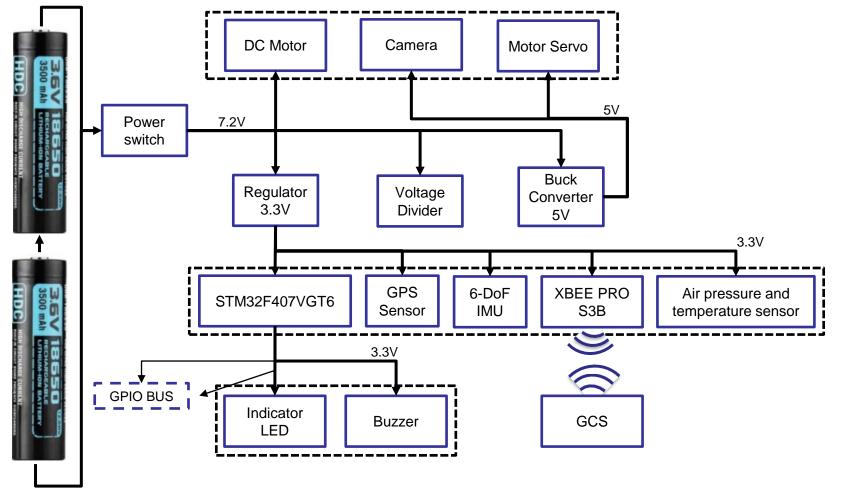
Type of Command	Command Format	Description	Example Data
ST: Set Time	CMD, <team_id>, ST, <utc_time></utc_time></team_id>	 CMD and ST are static text <team id=""> is the assigned team identification</team> <utc_time> is UTC time in the format hh:mm:ss</utc_time> 	The command CMD,1085, ST,13:50:02 sets the mission time to the value given
SIM: Simulation Mode Control Command	CMD, <team_id>, SIM, <mode></mode></team_id>	 CMD and SIM are static text <team_id> is the assigned team identification</team_id> <mode> is the string 'ENABLE' to enable the simulation mode, 'ACTIVATE' to activate the simulation mode, or 'DISABLE' which both disables and deactivates the simulation mode</mode> 	Both the CMD,1085,SIM,ENABLE and CMD,1085,SIM,ACTIVATE commands are required to begin simulation mode
CX: Payload Transmission On/Off	CMD, <team_id>, CX, <on_off></on_off></team_id>	 CMD is static text CX are static text indicating to control telemetry for payload <team id=""> is the assigned team identification</team> <on_off> is the string 'ON' to activate the science payload transmissions and 'OFF' to turn off the transmissions</on_off> 	CMD,1085,CX,ON will trigger the payload to begin telemetry transmissions. CMD,1085,CX,OFF will trigger the payload to stop telemetry transmissions

Payload Command Formats (2/2)

Type of Command	Command Format	Description	Example Data
SIMP: Simulated Pressure Data (to be used in Simulation Mode only)	CMD, <team_id>, SIMP, <pressure></pressure></team_id>	 For testing purpose only CMD and SIMP are static text <team id=""> is the assigned team identification</team> <pressure> is the simulated atmospheric pressure data in units of pascals with a resolution of one pascal</pressure> 	CMD,1085,SIMP,101325 provides a simulated pressure reading to the payload (101325 Pascals = approximately sea level) Note : only in simulation mode
CAL: Payload reset and calibration	CMD, <team_id>, CAL</team_id>	 CMD and CAL are static text <team id=""> is the assigned team identification</team> 	CMD,1085,CAL will reset the microcontroller on payload to set new mission reference

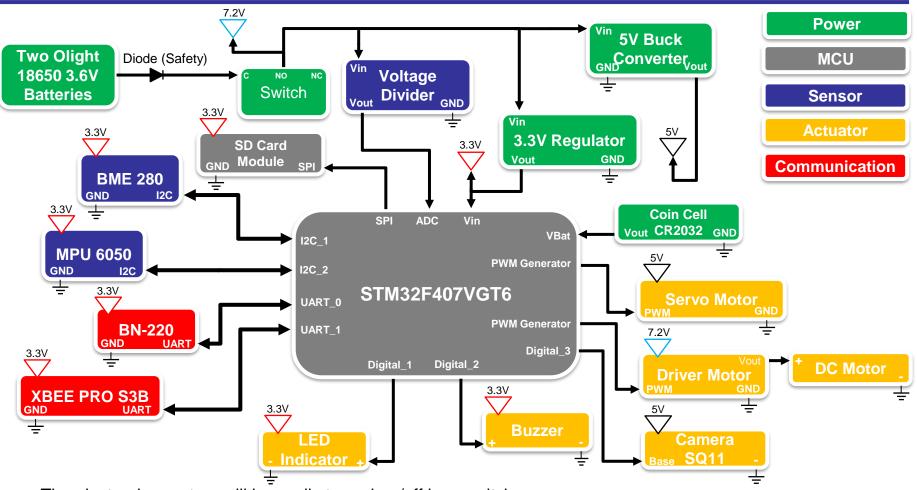
Electrical Power Subsystem Design

Achmad Bagus Okto Faerizqi


EPS Overview (1/2)

Component	Purpose
Power	 All components in the payload are powered by two Olight 18650 3.6V batteries connected series. The total voltage is 7.2V Real-Time Clock (RTC) power is provided by a 3V coin battery The payload will be reset and power connected and disconnected using an external on/off switch All of the sensors and the XBEE in the payload are powered by the 3.3V regulator
MCU	 STM32F407VGT6 will operate all actuators and collect all sensor data. It will be supplied by 3.3V output from the regulator SD Card will save all sensor data RTC will keep mission time in case of a sudden reset
Sensors	 BME280 will collect temperature and pressure data. It will be supplied by 3.3V from the voltage regulator The MPU6050 will collect orientation data. It will be supplied by 3.3V from the voltage regulator The voltage divider will take battery voltage data. It will be connected to 7.2V from the batteries
Actuators	 The heat shield will be opened using a DC motor. It will receive 7.2V as power direct from the battery The camera will be used to record terrain. It will be supplied by 5V from the buck converter The LED indicator will turn on to show that the system is active. It will receive 3.3V from a GPIO pin as power The servo will be used to deploy the parachute and the flag. It will be supplied by 5V from the buck converter
Communications	Data will be sent and received from the GCS by XBEE Pro S3B. The voltage regulator will provide 3.3V to power it

Two Olight 18650 3.6V batteries connected series



Part	PDR	CDR	Rationale	
Payload 5V Supply	5V voltage regulator	Buck converter	Provide more efficiency of power	

Payload Electrical Block Diagram

- The electronics system will be easily turned on/off by a switch
- The buzzer beeps and the LED blinks when the system is powered on
- A cell coin battery is used to supply the internal RTC in the MCU
- voltage divider is used as an intermediary before going to the ADC

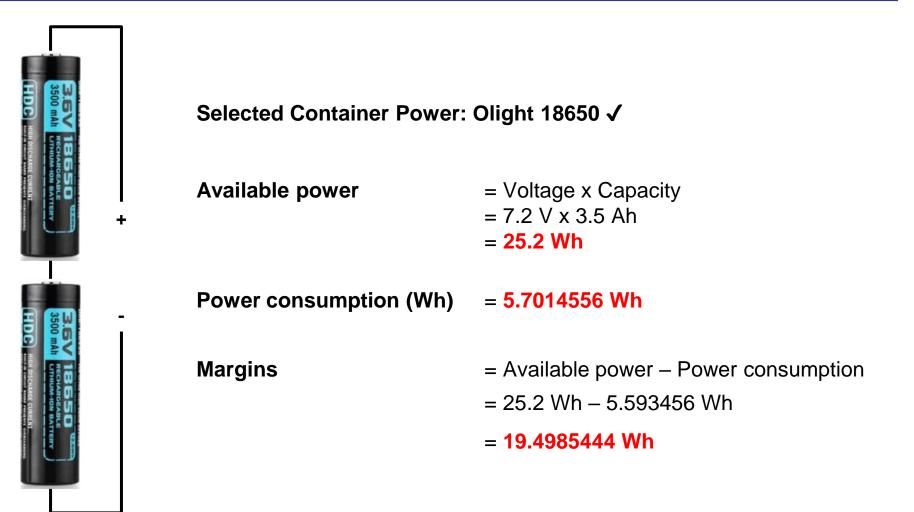
Payload Power Source

Model	Battery Type	Voltage (V)	Weight (g)	Nominal Capacity (mAh)	Maximum Discharge Current	Dimension (mm)		Cost (\$)
						Height	Diameter	COSt (φ)
OLIGHT 18650	Lithium Ion	3.6	48.27	3500	10.000	69.8	18.5	25.13

Selected Battery	about	Two battery will in series to all components
OLIGHT 18650 ✓	 Two Olight 18650 battery supplies 7.2 volts. Single battery has an capacity of 3.6V and 3500mAh. The battery can discharge up to 10A instantly. The battery supplies the system until more than 2 hours. 	+ Olight - DC Motor - + Olight - SV Buck Converter
	One battery can power all electronic components in the payload	Olight Converter

5V Electrical Components

3.3V Electrical Components


Payload Power Budget (1/2)

Component	Quantity	Source	Current (mA)	Voltage (V)	Duty Cycles in 1 Hour (%)	Power Consumption (Wh)
STM32F407VGT6 (include RTC)	1	Datasheet	50	3.3	100	0.165
XBEE Pro S3B	1	Datasheet	215	3.3	100	0.7095
BME280	1	Estimated	1.064	3.3	100	0.0035112
MPU6050	1	Datasheet	12.3	3.3	50	0.020295
Servo MG90	1	Measured	250	5	50	0.625
DC Motor	1	Measured	140	7.2	50	0.504
SD Card Module	1	Datasheet	20	3.3	50	0.033
SQ11 – Camera	1	Measured	80	5	50	0.2
LED	1	Estimated	30	3.3	100	0.099
Buzzer 95 dB	1	Datasheet	80	3.3	100	0.264
Voltage Divider	1	Estimated	0.878	7.2	100	0.0063216
BN-220	1	Measured	67	3.3	100	0.2211
Total					2.8507278	
Consumption for 2 Hours				5.7014556		

Flight Software (FSW) Design

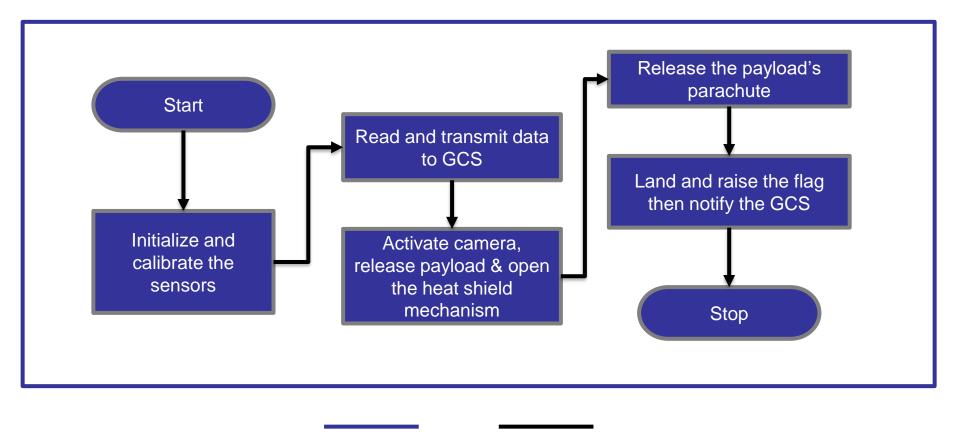
Muhammad Tsaqif Mukhayyar

FSW Overview (1/4)

CanSat FSW Tasks

CanSat will collect data from sensors and transmit the data to GCS during ascent until it land. At 500 m, the CanSat will release a payload and then activate the heat shield mechanism in the payload. When the payload reaches 200 m, the payload will deploy a parachute. Once the payload has landed, it will raise a flag using the servo mechanism. The SD Card is used to back up the data and store the video on the container and payload.

A video camera will be added to the payload and pointed toward the ground. The bonus video camera will be added to the container to record and show the separation of the payload.

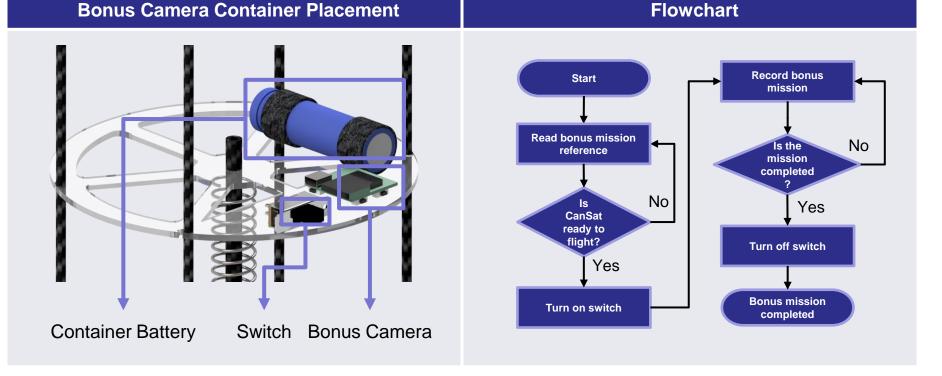

	Programming Languages	Development Environments
•	C/C++	 Arduino IDE STM32CubeIDE XCTU RealTerm

CanSat FSW Architecture

Payload

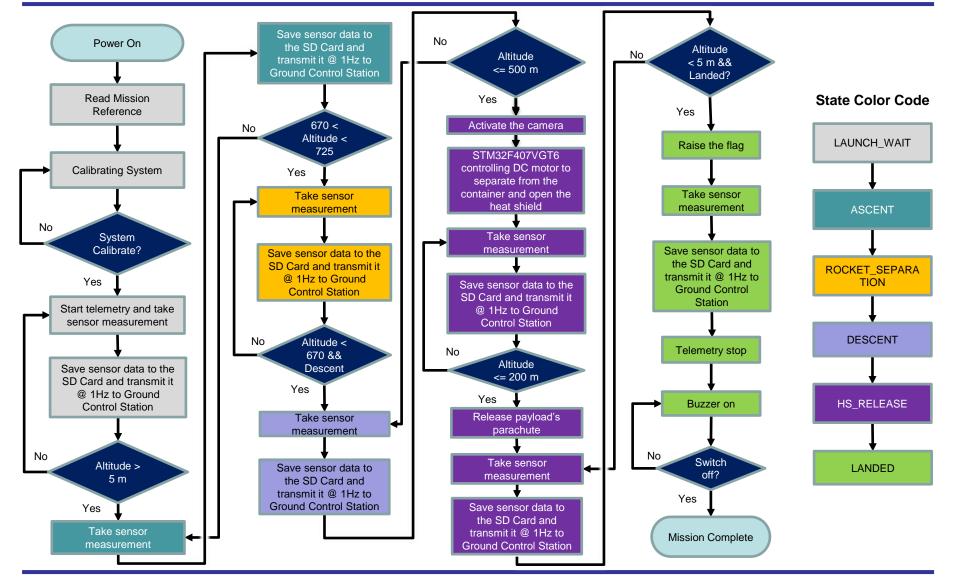
Next Flow

Payload FSW Tasks


- 1. The payload will set the new mission reference when receiving CAL from the GCS and save calibration data to the SD Card
- 2. The payload FSW mode will read from SD Card on the STM32F407VGT6, the default mode is Flight mode, and when the payload receives commands **SIM ENABLE** and **SIM ACTIVATE** from the GCS, the payload will enter the simulation mode
- 3. When the payload enters the **ASCENT** state, the payload will collect the packet data and then save it to the SD Card, the payload packet data will be transmitted @1Hz to the ground station via XBEE Pro S3B
- 4. In 500 m the payload will deploy the heat shield and the **HS_DEPLOYED** indicator change into **P** from **N**
- 5. In 200 m the payload will deploy its parachute and the **PC_DEPLOYED** indicator change into **C** from **N**
- 6. When the state is **LANDED** the payload will raise a flag and **MAST_RAISED** indicator changed to **M** from **N**, and all telemetry data transmission will be stopped
- 7. The mission will be completed

Bonus Mission Overview

- 1. The container will be installed with camera, battery and switch.
- 2. Before the launch camera switch will be turned on.
- 3. The camera will remain recording for 2 hours during pre-flight until the switch is turned off(post-flight).



Payload CanSat FSW State Diagram (1/3)

Presenter: Muhammad Tsaqif Mukhayyar

Cansat 2023 CDR: Team 1085 Bamantara EEPISAT

Mechanism Activations

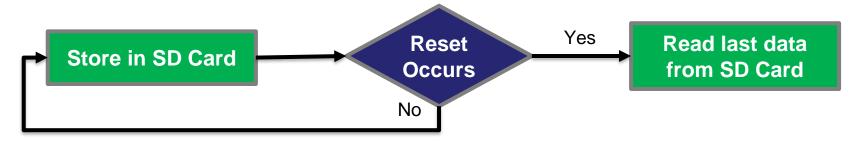
At 500 m, STM32F4 will activate :

- The DC motor to control the payload to separate from container
- The DC motor to control the payload ribs to open heat shield
- The camera to record terrain

At 200 m, STM32F4 will activate :

• The servo to open rubber locking system to deploy payload's parachute.

At Landed, STM32F4 will activate :


- The servo to control the flag to raise
- The DC motor to control the payload to upright position

Major Decision Points in The Logic

The altitude will be the major decision parameter among other parameters used as consideration.

Data Storage	Sampling of Sensors	Communications
 Video and backup telemetry data will be stored on the SD Card SD Card is used for recovery after reset 	The data sensor will be sampled at 1 Hz (1000ms).	Payload communicates using Taoglas FXP 290 and transmits data to the ground station. All commands will be included in CDH.

Payload Data Recovery

STM32F407VGT6 will recover (stored in SD Card):

- Packet Count
- Last State
- Command Echo
- Reference Altitude

Reason for Reset

Temporary power loss occurs

Power Management

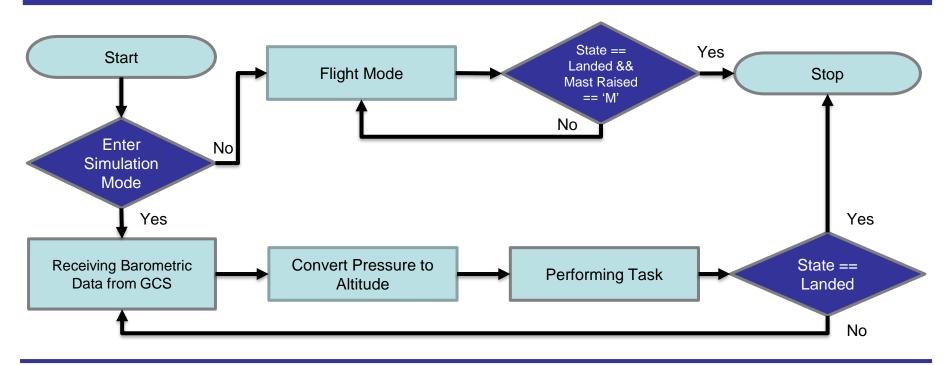
For two hours flight is enough with (2x) 3.6V OLIGHT 18650 3500 mAh batteries

Simulation Mode

- Simulation mode is for testing, pre-flight demonstration, and contingency, where launch operations are not possible. The telemetered pressure sensor data should reflect the commanded simulation values, not the actual sensor readings
- To activate the simulation mode, GCS must send SIM ENABLE followed by SIM ACTIVATE to the payload
- The values other than the pressure and altitude (calculated from the pressure values) will be actual sensor readings. The relayed payload telemetry will contain actual sensor values
- The barometric pressure data will be read by a .txt file in the GCS and transmitted value by the command to the payload at a rate of one data per second
- After the simulation mode is active, flight software will receive barometric pressure sensor command (**SIMP**) from GCS and use the received values as if they were actual barometric pressure readings in the calculation of altitude, and determination software state
- After GCS sends the **SIM DISABLE**, the flight software will switch to flight mode

Simulation Mode Commands

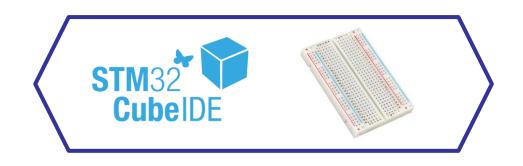
CMD,<TEAM_ID>,SIM,<MODE>


<MODE> consists of :

- 'ENABLE' to enable simulation mode;
- · 'ACTIVATE' to activate simulation mode; or
- · 'DISABLE' to disable and deactivate simulation mode

CMD,<TEAM_ID>,SIMP,<PRESSURE>

This command provides a simulated pressure reading to the payload


Simulation Mode Flowchart

Prototyping procedure and prototyping environment					
Subject	Prototyping Environment	Prototyping Procedure			
STM32F4	STM32CubeIDE	Programming and debugging are done in STM32CubeIDE and the data will be monitored in RealTerm			
Sensors	Breadboard and PCB	Each sensor is tested on the breadboard separately			

Software Subsystem Development Sequence			
Subsystem Development Sequence			
Sensors	 Sensor trade and selection - select the best sensors for our application Individual sensor programming - program payload sensor with STM32CubeIDE 		
State Mechanism	Integrate all sensors and test it in state mechanism		
XBee Telemetry	Testing GCS and payload communication – Configure and test all payload sensors data that will be transmitted to GCS		
Heat Shield Mechanism	Program the payload mechanism with DC Motor to control the heat shield rib		
Parachute Mechanism	Program the payload mechanism with servo to release the parachute		
Flag Mechanism	Program the payload mechanism with servo to raise the flag		
Integrate all	Integrate all software subsystem to ensure all system works well		
Development Team			

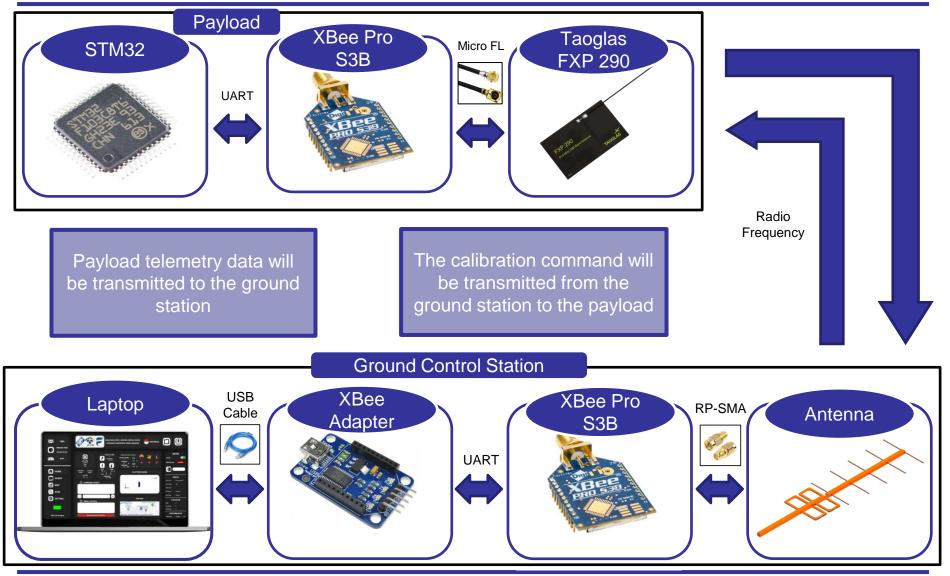
- 1. Achmad Bagus Okto Faerizqi
- 2. Muhammad Tsaqif Mukhayyar

Test Methodology

- Necessary software is installed such as Arduino IDE and STM32Cube IDE to help the software development
- Telemetry software tests are simulated using XCTU
- Sensors and hardware were tested separately
- Test the state mechanism for the payload
- Test the system recovery for the payload
- Test the telemetry data and communication commands using hardware
- Test the flight mode software using GCS
- Test the simulation mode software using GCS
- Check whether the FSW meets the competition requirements
- Test integrated sensors and hardware according to the mission

Progress Since PDR

- 1. Sensors were calibrated and tested.
- 2. Payload flight software states has been tested.
- 3. Payload is able to receive commands from GCS properly.
- 4. Payload is able to send data to the GCS properly.
- 5. Payload data recovery was tested.
- 6. Simulation mode has been tested with GCS.
- 7. Payload software development has been made based on mission guide.


Ground Control System (GCS) Design

Muhammad Tsaqif Mukhayyar

GCS Overview

Part	PDR	CDR	Rationale
GCS GUI	Graph is using Livecharts2.Net Library	Graph is using ScottPlot library	A failure can occur when attempting to display real-time data that is delayed when being plotted
Antenna	Antenna Antenna is using Moxon Antenna		Improve the design and quality of antenna to minimize data loss

USB Cable

Specifications		
Battery	GCS Laptop can operate 2.5 hours on battery from fully charged	
Overheating Mitigation	There will be an external laptop cooling fan with power source from power bank and also an umbrella	
Auto Update Mitigation	Auto update and internet connection will be disabled before the launch	

GCS Antenna (1/2)

I	Model	Frequency Range	Gain (dBi)	Beamwidth (Horizontal	Direction Rang	Range (km)	Cost (\$)	Antenna	Pattern
		(MHz)		/ Vertical)				Horizontal	Vertical
	loxon- Yagi ntenna	915 MHz	10.5	40 / 45	Directional	4	17		

Selected Mounting Antenna Design

Hand-Held Antenna

The antenna will be hand-held for easy targeting and minimize data loss since the payload altitude will change over time.

Selected Anntena

Moxon-Yagi Anntena

Reasons:

- Higher gain than previous Moxon Antenna
- It can be brought easily
- Better range
- Cheap

GCS Antenna (2/2)

Link Budget Calculation

$$P_{RX} = P_{TX} + G_{TX} - L_{TX} - L_{FS} - L_M - G_{RX} - L_{RX}$$
$$= 24 + 10.5 - 0 - 101.2 - 5 + 1.5 - 0$$
$$= -68.2 \text{ dBm}$$

All of losses are ignore, except L_{FS} and L_M Misc Losses = 5 dBi (estimated)

Free-Space Part Loss Calculation

 $FSPL = 20 \, log_{10}(d) + 20 \, log_{10}(f) + 32.44$

= 12.04 + 59.22 + 32.44

= 103.7 dB

Distance = 4 km (predicted)

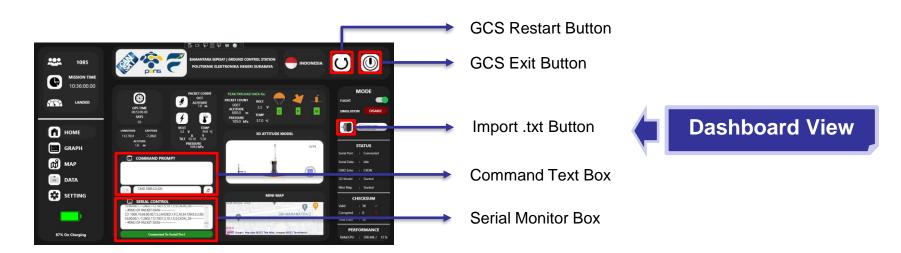
– 68.2 dBm > – 107 dBm

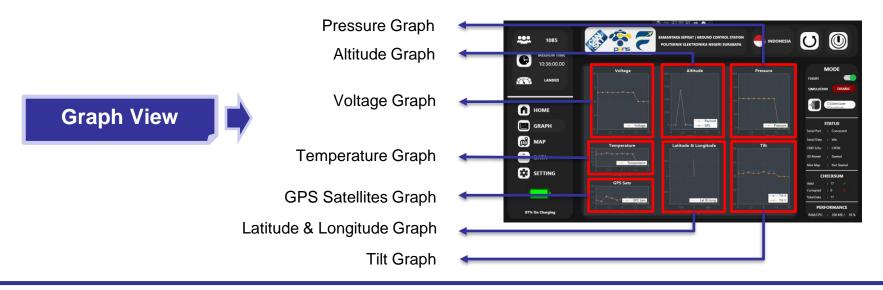
Information : $P_{RX} = Received Power (dBm)$ $P_{TX} = Transmitted Power Output (dBm)$ $G_{TX} = Transmitter Antenna Gain (dBi)$ $L_{TX} = Losses from Transmitter (dB)$ $L_{FS} = Free-Space Part Loss (dB)$ $L_M = Misc Losses (dB)$ $G_{RX} = Receiver Antenna Gain (dBm)$ $L_{RX} = Losses from Receiver (dB)$

Information : FSPL = Free-Space Path Loss (dB) d = Distance between the antennas (km) f = Frequency (MHz)

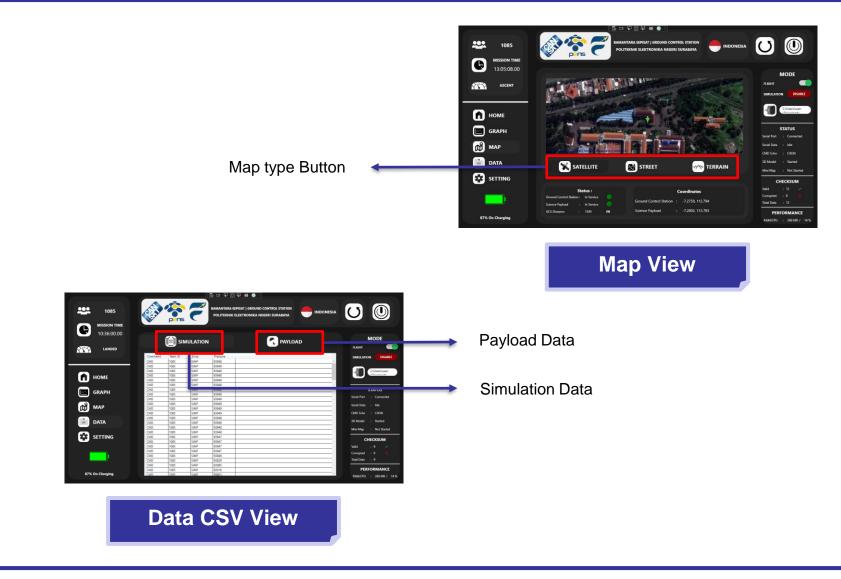
Xbee Receiver Sensitivity = -107 dBm

Our margin is **38.8 dBm** which can provides a reliable operation and it's sufficient for the requirement

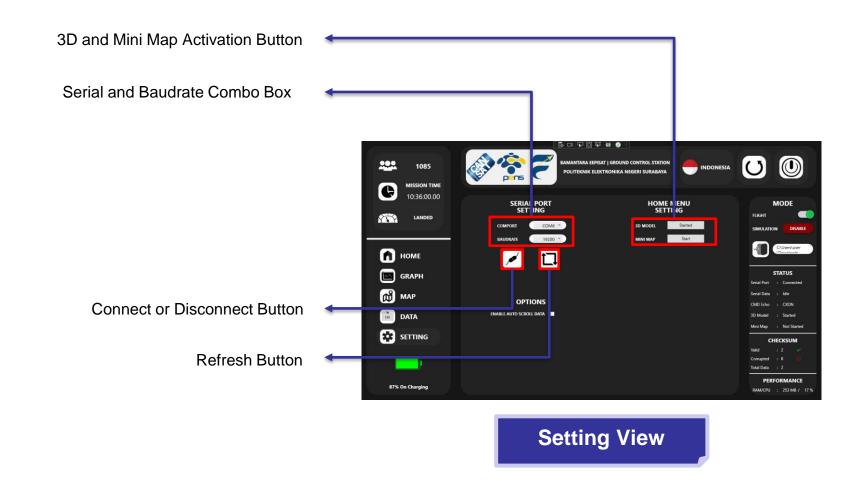




Commercial Off The Shelf (COTS) Software Packages Used	 Visual Studio 2022 Community Edition XCTU (XBee Program Software)
Real-Time Plotting Software Design	The telemetry data that received from the serial port will be transferred to the PC by of USB connector, and processed with C# using ScottPlot and C# Windows Presentation Foundation (WPF) library to display in real time the telemetry and finally data will be saved in a .csv file
Command Software And Interface	There will be a command text box to calibrate all the telemetry data, and command the payload to start transmitting the telemetry data. To calibrate air pressure sensors and inertial measurement sensor, the calibration command will be sent to the payload. The air pressure sensor will acquire reference 0 meter pressure and save it. As for inertial measurement sensor will sent the stage of calibration to GCS until all component in the sensors are fully calibrated.
Telemetry Data Recording And Media Presentation To Judges For Inspection	Telemetry data in as a .csv file, the screenshot of the interface, and media data recorded from the container and payload using the camera will presented to the judges via USB memory storage device.
Description of .csv Telemetry File Creation For Judges	 All received telemetry data will be saved as .csv (Comma Separated Value) file. In CSV format, data is separated by comma. CSV file name will be "Flight_<team_id>.csv</team_id>
Simulation Mode Description	GCS will issue the payload the commands SIM ENABLE and SIM ACTIVATE. After that, GCS will read the lines of the.txt file containing the barometric pressure data and communicate it to the flight software at intervals of one second using the Simulated Pressure Data Command.
Commanding	GCS crew will send the command to the payload via a command text box. The command will be typed manually (described in Payload Command Format subsection), when the enter key is pressed the command will transmit to the payload.



Presenter: Muhammad Tsaqif Mukhayyar Cansat 2023 CDR: Team 1085 Bamantara EEPISAT



Progress Since PDR

- GCS can transmit all the command to FSW.
- GCS can receive and visualize all the telemetry data in label, chart, 3D and map in real-time.
- GCS can save the payload telemetry data files in .csv format.
- GCS can read a .txt file that contains barometric pressure data and transmit it to payload in one second interval (1Hz) in simulation mode.
- The antenna has been made and tested, the results are appropriate.

CanSat Integration and Test

Tsabitah Akmal Al Mumtazah

CanSat Integration and Test Overview (1/3)

Subsystem Level	Integrated Level Functional	Environmental
 Sensors CDH EPS Radio Communications FSW Mechanical Descent Control 	 Descent Testing Communications Mechanisms Deployment Simulation 	 Drop Test Thermal Test Vibration Test Fit Check Vacuum Test

CanSat Integration and Test Overview (2/3)

Subsystem Level Testing Details

Sensors: All sensors will be mounted on the PCB along with a microcontroller to begin processing data, and the resulting output will be shown on the serial monitor of the Arduino IDE.

CDH: The XBEE configuration will be tested on the PCB, and the XCTU software will be utilized to verify that no errors have occurred during data transmission.

EPS: To ensure a duration of 2 hours of operation, all electronic components will be linked to two batteries.

Radio Communications: Communication range testing with an XBEE and an antenna.

FSW: State and recovery tests were performed to confirm that the software worked properly.

Mechanical: Mechanisms such as hinges, servo, DC motor and leadscrew will be checked to ensure they fulfill competition requirements.

Descent Control: The rate of descent of the container and payload will be evaluated at specific altitudes.

Integrated Level Testing Details

Descent Testing: The CanSat's descent rate will be assessed in order to verify the accuracy of the calculations that have been performed.

Communications: Antenna tests will be performed on XBEE communication through GCS-Payload to ensure that telemetry data complies with competition requirements.

Mechanisms: All of the mechanisms will be repeatedly tested to ensure that the mechanical components can survive the required force limits.

Deployment: The DC motor and leadscrew will be tested to verify that the payload is released from the container and that the heat shield angle is maintained.

Simulation: Flight Software and GCS simulation mode testing.

CanSat Integration and Test Overview (3/3)

Environmental Testing Details

Drop Test: The CanSat will be attached to a fixed bar at a height of 2 meters using a 61 cm cord, and subsequently, a drop test will be performed to inspect the power, components, and mountings of the CanSat.

Thermal Test: The CanSat will be placed inside DIY insulated thermal chamber, and heat will be generated using a hot air gun to maintain a temperature range of 55-60°C for a period of 2 hours.

Vibration Test: A vibration test will be conducted using an orbital sander to ensure the mounting integrity of all components, mounting connections, structural integrity, and battery connections.

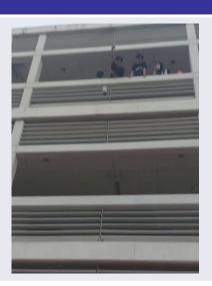
Fit Check: The dimensions of the CanSat will be measured using vernier calipers, a ruler, and tape.

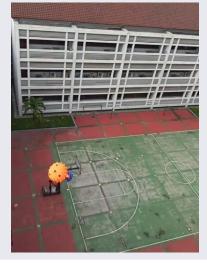
Vacuum Test: The CanSat will be placed inside a vacuum chamber to start collecting data in telemetry format once it reaches its peak altitude.

Simulation Testing Details

GCS: The GCS simulation command will be tested to ensure it works properly and is able to read .txt files provided by the judges.

Flight Software: A simulation command can activate the microprocessor to process data received from the GCS.


Subsystem Level Testing Plan				
Sensors	 Functional tests of the sensors on the breadboard High-accuracy sensor calibration 			
CDH	 XBEE data transfer range and configuration Verify the data's accuracy and speed of transmission to the ground station Ensure that the data format follows the mission guide 			
EPS	 Testing each component to ensure proper operation Testing that power can fulfill the demand for electronic components The watt-hour capacity of the battery will be measured to determine the margin 			
Radio Communications	Antenna range testBeam and stability of communication testing			
FSW	 Accuracy of the data received from sensors and camera Maintain recovery data in case of a microcontroller resets Flight Algorithm test State testing 			
Mechanical	 Payload release mechanism test Ensure the component of CanSat can survive when it's launched Ensure the payload is uprighted after landing Servo and DC motor will be inspected carefully to ensure freedom of operation 			
Descent Control	 CanSat stability drop test Parachute system test Payload aerobraking test 			

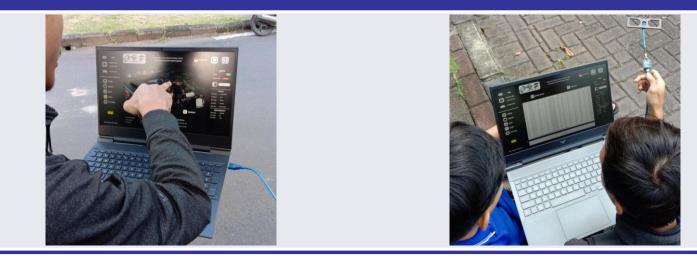


Integrated Level Functional Test Plan (1/4)

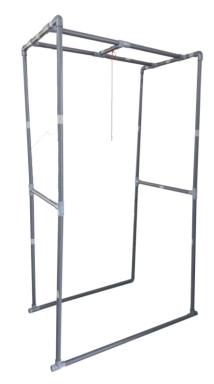
Integrated Level Functional Test Plan				
Descent Testing	 The purpose of this test is to ensure that CanSat descends at the speed defined in the mission guide We will drop a 700 g CanSat from the top of the buildings using a parachute to test its descent rate 			

Integrated Level Functional Test Plan			
Communications	 The purpose of this test is to ensure that the communication system is functional We will use flight software to communicate with the XBEE at 1Hz for the payload at various ranges. The data must be shown in the GCS monitor This test will be performed in a crowded area to ensure that the signal is not interrupted 		

Integrated Level Functional Test Plan	
Mechanisms	 The purpose of this test is to ensure that the payload can be released from the container and the parachute mechanism operates correctly Verify that the payload parachute mechanism is succeed Ensure the payload deploys a heat shield after leaving the container Verify all mechanisms doesn't breaks when tested under all forces
Deployment	 Parachute deployment will be tested at various altitude CanSat deployment at various altitude Check for any sharp edges and obstacles that could prohibit CanSat from being deployed Test the payload release mechanism using simulated altitude triggering



Integrated Level Functional Test Plan		
Simulation	 This test is designed to verify if the Ground Station is capable of reading a .txt file of barometric pressure data that simulates the mission profile and transmitting the values to the payload at a rate of one data per second (1 Hz) via commands We will put it to the test by preparing barometric data in .txt file Test if GCS is able to transmit the pressure value at one second interval (1Hz) to flight software 	



Drop Test

This test is designed to verify that the container parachute and attachment point will survive the deployment from the rocket payload section which can be very violent.

- Power on CanSat
- Verify telemetry is being received
- Raise CanSat by the a 61 cm non-stretching cord
- Release the CanSat
- Verify the CanSat did not lose power
- Inspect for any damage, or detached parts
- Verify telemetry is still being received

(CanSat mission guide)

Drop Test Frame

Thermal Test

This test is to verify the CanSat and container can operate in a hot environment. The heat source will be provided by a thermal chamber and a hot air gun.

- Place CanSat into a thermal chamber, turn on the CanSat, close and seal the thermal chamber, turn on the heat source
- Monitor the temperature and turn off the heat source when the internal temperature reaches 60 °C and turn on the heat source when the temperature drops to 55 °C
- Maintain the test conditions for two hours
- Turn off the heat source and perform visual inspection and any functional tests to verify the CanSat survived the thermal exposure and can operate as expected
- With the CanSat still hot, test any mechanisms and structures to make sure the integrity has not been compromised. Take precautions to avoid injury
- Verify epoxy joints and composite materials still maintain their strengths

(CanSat mission guide)

EEPISAT's Thermal Chamber

Vibration Test

This test is designed to verify the mounting integrity of all components, mounting connections, structural integrity, and battery connections. The vibration will be tested with an RK3000 Vertical Vibration Meter.

- Power on the CanSat
- Verify accelerometer data is being collected
- Power up the vibration machine. Once the vibration machine is up to full speed, wait 5 seconds
- Power down the vibration machine to a full stop. Repeat it four more times
- Inspect the CanSat for damage and functionality
- Verify accelerometer data is still being collected
- Power down CanSat

(CanSat mission guide)

RK3000 Vertical Vibration Meter

Fit Check

This test is designed to verify if the CanSat is able to fit in rocket. To ensure that CanSat fits in the rocket and reduces the possibility of deployment failure, we use vernier caliper to control the accuracy of CanSat's diameter with a margin of error.

(CanSat mission guide)

Vernier Caliper Source: https://www.aliexpress.us

Vacuum Test

This test is designed to verify deployment operation of the payload.

- Suspend the fully configured and powered CanSat in the vacuum chamber
- Turn on the vacuum to start pulling a vacuum
- Monitor the telemetry and stop the vacuum when the peak altitude has been reached
- Let the air enter the vacuum chamber slowly and monitor the operation of the CanSat
- Collect and save telemetry
- Make the saved telemetry available for the judges to review

(CanSat mission guide)

Vacuum Chamber Source: https://ubuy.co.id

Test Procedures Descriptions (1/3)

Test Proc	Test Description	RN	Pass/Fail Criteria	Status
1	Air Pressure Sensor Test	39	The data altitude refers to the actual altitude	Pass
2	Air Temperature Sensor Test	39	Temperature data and actual temperature are similar	Pass
3	GPS Sensor Test	39	Showing correct time and location	Pass
4	Voltage Sensor Test	39	Voltage data is similar to the Avometer calculation	Pass
5	Camera Test	40-42	Result of video capturing minimum resolution of 640x480 pixels and 30 frames per second	Pass
6	Tilt Sensor Test	39	RPM data is similar with tachometer	Pass
7	Power Consumption Test	31	Actual power consumption is similar with calculation result measured using Avometer	Pass
8	XBEE Communication Test and Antenna Range Test	20, 58	Communication data sent and received by GCS from 750m distance	Pass
9	Data Transmission at 1Hz Test	61	The data must be in correct order at 1 Hz rate	Pass
10	FSW State Test	53	State changes along as altitude increases and descends that calculated from pressure	Pass
11	Testing of Data Recovery Algorithm	44-45	The data (altitude reference, packet count, states, coordinate, etc) will be recovered to SD card and process will continue	Pass

Presenter: Tsabitah Akmal Al Mumtazah Cansat 2023 CDR: Team 1085 Bamantara EEPISAT

Test Procedures Descriptions (2/3)

Test Proc	Test Description	RN	Pass/Fail Criteria	Status
12	GCS Interface Test	54-57	The GCS interface displays all telemetry data received (graph and labels)	Pass
13	GCS PC Battery Test	58	GCS PC is still operational after 2 hours of use	Pass
14	GCS Data Inspection and Data Format Save Test	47, 51, 61	The data is automatically presented in engineering units and saved into a .csv file	Pass
15	GCS Communication Test	50	GCS is able to send commands to payload to start send the telemetry data and calibrate the altitude	Pass
16	Container and Payload Descent Test	10, 11	Container descents at descent rate of 15m/s (±5m/s) for container parachute and 5m/s (±1m/s) for payload parachute	Pass
17	Payload Aerobraking Test	33, 34	The payload is able to open a heat shield and maintain a descent rate at 20m/s or less	Pass
18	CanSat Deployment Test	3, 6, 7	CanSat doesn't have any sharp edges	Pass
19	Payload Parachute Deployment Test	35	Payload parachute able to deploy from the top frame of the payload	Pass
20	Payload Deployment Test	32	Payload able to deploy from container successfully	Pass
21	Payload Flag Deployment Test	37	Flag is deployed to 500 mm above the base of the payload	Pass

Test Procedures Descriptions (3/3)

Test Proc	Test Description	RN	Pass/Fail Criteria	Status
22	Drop Test	12, 30	CanSat survived a drop from 2 feet attached to cord. No parts falling off, no separation	Upcoming
23	Thermal Test	30	No CanSat materials warp, weaken, change characteristics, or fail to function	Pass
24	Vibration Test	13, 30	All mounting integrity of all components, mounting connections, structural integrity, and battery connections survived	Upcoming
25	Fit Check	1, 2, 3	Total Mass of CanSat 700 gr +/- 10 grams and dimension of CanSat under 125 x 400 mm	Pass
26	Vacuum Test	30	FSW is able to detect the altitude from pressure changes inside the vacuum chamber	Upcoming

GCS

This test is designed to verify if the Ground Station is capable of reading a .txt file of barometric pressure data that simulates the mission profile and transmitting the values to the payload at a rate of one data per second (1 Hz) via commands. We will put it to the test by preparing barometric data in .txt file. The **Simulated Pressure Data** command will read data containing a barometric pressure value and transmit it to the flight software at one second intervals (1 Hz) to start simulating altitude. GCS will receive the converted altitude value from the flight software.

Flight Software

This test is designed to verify that the GCS barometric pressure data was generated in altitude. We will enable simulation mode with **ENABLE** command from GCS. After that, we begin the simulation mode with **ACTIVATE** command to stop reading pressure from the sensor system. Substituted the data of the sensor with .txt file from the committee and make sure it transmitted to GCS in altitude data. At 101325 Pascals = approximately sea level barometric data will be saved to SD Card as an altitude ground level reference.

Mission Operations & Analysis

Tsabitah Akmal Al Mumtazah

1. Arrival

- Team arrival at the launch site
- GCS and antenna setup
- · Check for any damages that may occur during travel

2. Pre-Launch

- Communication inspection
- Mechanism inspection
- · Assembly of the container and payload
- · Check the CanSat dimension and weight

3. Rocket Integration

- Final CanSat inspection completed before launch
- Turn on the CanSat, integrate it into the rocket, and ensure communication with GCS

4. Mission

- CanSat in a rocket launch
- Flight monitoring
- Display GCS to the judges and collect telemetry data during the mission
- Recovery crew preparation

5. Recovery

- CanSat recovery by location from last telemetry and buzzer
- Inspection of CanSat damage
- Retrieve data from SD Card in the payload

6. Data Analysis

- · GCS data analysis and acquisition
- Deliver SD card and telemetry data to judges for scoring
- Evaluation team for launch day
- PFR preparation

Overview of Mission Sequence of Events (3/4)

Roles	Member Name
Mission Control Officer (Responsible for informing the Flight Coordinator when the team and their CanSat is ready to be launched)	 Fatwa Aulia Al-Haq
Ground Station Crew (Responsible for monitoring the ground station for telemetry reception and issuing commands to the CanSat)	Muhammad Tsaqif Mukhayyar
Recovery Crew (Responsible for tracking the CanSat and going out into the field for recovery and interacting with the field judges)	
CanSat Crew (Responsible for preparing the CanSat, integrating it into the rocket, and verifying its status)	Artaka Sunu Adhi PrasetyaAchmad Bagus Okto Faerizqi

Overview of Mission Sequence of Events (4/4)

Antenna Construction and Ground System Setup	CanSat Assembly
 Set up the GCS equipment Connect the XBEE to the laptop using the XBEE adapter, and attach the antenna to the XBEE using the RP-SMA Male connector Power on the PC and disable the automatic Windows update feature Conduct a communication test to confirm that all data is being successfully received A team member will hold the antenna 	 Assemble electrical component Attach each component and store the payload inside the container Prepare parachute for deployment Power on the CanSat
CanSat Test	Delivery of Telemetry Data File
 CanSat fit and mass check Drop test Mechanism of separation test Antenna and communication test Sensor calibration and electronics component check CanSat final check 	 GCS receives telemetry data from XBEE GCS save received telemetry data in .csv file format. Retrieved .csv from the file manager into the PC and move it into a USB flash drive. GCS Operator delivers .csv file using USB Drive

Field Safety Rules Compliance

Mission Operations Manual	Description
Ground Station Configuration	Laptop and antenna preparationCommunication check and testing
CanSat Preparation	 CanSat assembly Sensor calibration Mass and size checking Calibration system by command from GCS
CanSat Integration	Fit checkDrop testBattery verification
Launch Preparation	Final communication checkCheck CanSat stowed state inside the rocket
Launch Procedure	 Pre-launch checks Verify with the ground station that the ground station is ready for launch
	ready for launch

Development Status

- There will be two (2) Mission Operations Manual will be assembled into a three-ring binder. It consists of five sections and each section will start on its own page according to mission guide of CanSat
- Each member will familiarize themselves with the manual before launch day. The safety of each person on launch day is crucial
- Mission Operations Manual has been downloaded from the CanSat competition website. It will be updated as we encounter changes before the launch day

CanSat Recovery

- · Recovery crew will maintain visual contact with the container and payload to aid recovery
- We will provide team details on CanSat's outside construction
- We also use GPS to track the payload
- The color of the container, payload, and parachute is orange
- Payload has a buzzer that will continuously buzz when it lands

This address labeling will be placed on our container and payload's body

Mission Rehearsal Activities

Ground System Radio Link Check Rehearsed on March 26 th 2023	 Ensure that GCS receives data properly from XBEE Command testing and calibration from GCS
Powering On/ Off CanSat Rehearsed on April 14 th 2023	 Turn on CanSat with an external switch Visual verification of loose electronic components before turning on Ensure the serial sent to the ground station is correct
Launch Configuration Preparations Rehearsed on April 21 th 2023	 Assembly CanSat into operating configuration Fit Check Main mechanisms check
Loading CanSat in the launch vehicle Rehearsed on April 28 th 2023	 CanSat is placed inside a DIY rocket envelope with the dimensions as in the competition requirements Visual verification for sharp edges before loading into the rocket
Telemetry processing, archiving and analysis <i>Rehearsed on April 30th 2023</i>	 Real-time graph check Ensure the data processed is saved into .csv file Analyze data displays on GCS GUI Deliver telemetry data to judges via USB
Recovery Rehearsed on April 28 th 2023	 Recovery will commence after telemetry is stopped Last GPS location and fluorescent color will ease recovery

Requirements Compliance

Tsabitah Akmal Al Mumtazah

We designed and created CanSat by analyzing and identifying the CanSat Mission Guide 2023. The system will be tested in compliance with the CanSat Integration and Test section.

- We have complied with **58 requirements** based on the CanSat Mission Guide 2023.
- There are <u>3 partial compliances</u> that will require further testing. We need to build some prototypes in order to fully comply with these requirements that s were only partially met.
- There are not any requirements that don't comply with our design.

Requirements Compliance (1/7)

RN	Requirement	Compliance	Ref Slides	Notes
1	Total mass of the CanSat (science probe and container) shall be 700 grams +/- 10 grams.	Comply	<u>84 – 87</u>	
2	CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.	Comply	<u>22</u>	
3	The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.	Comply	<u>22</u>	
4	The container shall be a fluorescent color; pink, red or orange.	Comply	<u>158</u>	
5	The container shall be solid and fully enclose the science probes. Small holes to allow access to turn on the science probes are allowed. The end of the container where the probe deploys may be open.	Comply	<u>68</u>	
6	The rocket airframe shall not be used to restrain any deployable parts of the CanSat.	Comply	<u>22</u>	
7	The rocket airframe shall not be used as part of the CanSat operations.	Comply	<u>22</u>	
8	The container's parachute shall not be enclosed in the container structure. It shall be external and attached to the container so that it opens immediately when deployed from the rocket.	Comply	<u>70</u>	
9	The Parachute shall be fluorescent Pink or Orange.	Comply	<u>39</u>	
10	The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5 m/s.	Comply	<u>59 - 60</u>	
11	0 altitude reference shall be at the launch pad.	Comply	<u>129</u>	

Requirements Compliance (2/7)

RN	Requirement	Compliance	Ref Slides	Notes
12	All structures shall be built to survive 15 Gs of launch acceleration.	Partial	<u>143</u>	We have not integrated our CanSat yet
13	All structures shall be built to survive 30 Gs of shock.	Partial	<u>145</u>	We have not integrated our CanSat yet
14	All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high performance adhesives.	Comply	<u>81 – 83</u>	
15	All mechanisms shall be capable of maintaining their configuration or states under all forces.	Comply	<u>143 –</u> <u>147</u>	
16	Mechanisms shall not use pyrotechnics or chemicals.	Comply	<u>62</u>	
17	Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting vegetation on fire.	Comply	<u>62</u>	
18	Both the container and probe shall be labeled with team contact information including email address.	Comply	<u>158</u>	
19	Cost of the CanSat shall be under \$1000. Ground support and analysis tools are not included in the cost. Equipment from previous years shall be included in this cost, based on current market value.	Comply	<u>173 –</u> <u>176</u>	
20	XBEE radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBEE radios are also allowed.	Comply	<u>95</u>	

Requirements Compliance (3/7)

RN	Requirement	Compliance	Ref Slides	Notes
21	XBEE radios shall have their NETID/PANID set to their team number.	Comply	<u>96</u>	
22	XBEE radios shall not use broadcast mode.	Comply	<u>96</u>	
23	The container (if needed) and probe shall include an easily accessible power switch that can be accessed without disassembling the cansat and science probes and in the stowed configuration.	Comply	<u>20</u>	
24	The probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the cansat and in the stowed state.	Comply	<u>102 –</u> <u>103</u>	
25	An audio beacon is required for the probe. It shall be powered after landing.	Comply	<u>102 –</u> <u>103</u>	
26	The audio beacon shall have a minimum sound pressure level of 92 dB, unobstructed.	Comply	<u>102</u>	
27	Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed.	Comply	<u>106</u>	
28	An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.	Comply	<u>18 – 21,</u> <u>81 – 83</u>	
29	Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.	Comply	<u>81 – 83</u>	

Requirements Compliance (4/7)

RN	Requirement	Compliance	Ref Slides	Notes
30	The CanSat shall operate during the environmental tests laid out in Section 3.5.	Partial	<u>143 –</u> <u>147</u>	We have not integrated our CanSat yet
31	The CanSat shall operate for a minimum of two hours when integrated into the rocket.	Comply	<u>106</u>	
32	The probe shall be released from the container when the CanSat reaches 500 meters.	Comply	<u>18 – 21</u>	
33	The probe shall deploy a heat shield after leaving the container.	Comply	<u>15 – 17</u>	
34	The heat shield shall be used as an aerobrake and limit the descent rate to 20 m/s or less.	Comply	<u>59 - 60</u>	
35	At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s +/- 1m/sec.	Comply	<u>57,</u> <u>59 - 60</u>	
36	Once landed, the probe shall upright itself.	Comply	<u>78</u>	
37	After uprighting, the probe shall deploy a flag 500 mm above the base of the probe when the probe is in the upright position.	Comply	<u>79</u>	
38	The probe shall transmit telemetry once per second.	Comply	<u>96</u>	
39	The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked.	Comply	<u>97 – 98</u>	
40	The probe shall include a video camera pointing down to the ground.	Comply	<u>36</u>	

Requirements Compliance (5/7)

RN	Requirement	Compliance	Ref Slides	Notes
41	The video camera shall record the flight of the probe from release to landing.	Comply	<u>24</u>	
42	The video camera shall record video in color and with a minimum resolution of 640x480.	Comply	<u>36</u>	
44	The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets.	Comply	<u>117</u>	
45	The probe shall maintain mission time throughout the whole mission even with processor resets or momentary power loss.	Comply	<u>117</u>	
46	The probe shall have its time set to within one second UTC time prior to launch.	Comply	<u>96</u>	
47	The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file.	Comply	<u>118 –</u> <u>119</u>	
48	In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the payload altitude.	Comply	<u>118 –</u> <u>119</u>	
49	The payload flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.	Comply	<u>118 –</u> <u>119</u>	
50	The ground station shall command the CanSat to start calibrating the altitude to zero when the CanSat is on the launch pad prior to launch.	Comply	<u>129</u>	

Requirements Compliance (6/7)

RN	Requirement	Compliance	Ref Slides	Notes
51	The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.	Comply	<u>129</u>	
52	Telemetry shall include mission time with 0.01 second or better resolution.	Comply	<u>117</u>	
53	Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.	Comply	<u>117</u>	
54	Each team shall develop their own ground station.	Comply	<u>124 –</u> <u>133</u>	
55	All telemetry shall be displayed in real time during descent on the ground station.	Comply	<u>129</u>	
56	All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.)	Comply	<u>129</u>	
57	Teams shall plot each telemetry data field in real time during flight.	Comply	<u>97 – 98</u>	
58	The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBEE radio and a hand-held antenna.	Comply	<u>124 –</u> <u>128</u>	
59	The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site.	Comply	<u>124 –</u> <u>133</u>	
60	The ground station software shall be able to command the container to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.	Comply	<u>129</u>	

Requirements Compliance (7/7)

RN	Requirement	Compliance	Ref Slides	Notes
61	When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the CanSat.	Comply	<u>118 –</u> <u>119</u>	
BM	A video camera shall be integrated into the container and point toward the payload. The camera shall record the event when the payload is released from the container. Video shall be in color with a minimum resolution of 640x480 pixels and a minimum of 30 frames per second. The video shall be recorded and retrieved when the container is retrieved.	Comply	<u>37</u>	

Management

Arneta Firdaus

Mechanical Procurement

Component	Quantity	Order	Receive	Status
Carbon Rod 3mm	23	21/12/22	23/12/22	Received
Carbon Rod 5mm tube	3	21/12/22	23/12/22	Received
Carbon Rod 3mm tube	3	21/12/22	23/12/22	Received
Acrylic 2mm	2	14/11/22	16/11/22	Received
Filament ABS+	1	1/3/2022	1/3/2022	Received
Resin Epoxy & Katalis	1	29/11/22	29/11/22	Received
Fiberglass	1	n/a	n/a	In stock
Torsion Spring	6		-	Not Yet Ordered
Compression Spring	2	-	-	Not Yet Ordered
Chinese Knoting Cord	2	-	-	Not Yet Ordered
Polycarbonate	1	16/03/23	19/03/23	Received
Resin 3D Print	1	16/03/23	19/03/23	Received

Electronics Procurement

Component	Quantity	Order	Receive	Status
STM32F407VGT6	1	1/3/2023	1/5/2023	Received
Camera SQ11	2	11/26/22	11/27/22	Received
AMS1117	2	n/a	n/a	In Stock
BN-220	1	12/11/22	15/11/22	Received
SD Card Module	1	12/9/22	12/11/22	Received
Limit Switch	4	n/a	n/a	In Stock
MPU6050	1	1/2/2023	3/4/2023	Received
MX1508	2	1/3/2023	3/5/2023	Received
Switch ON/OFF	1	n/a	n/a	In Stock
Servo SG90	2	2/7/2023	2/8/2023	Received
Coin Battery Holder	1	n/a	n/a	In Stock
Batttery CR2032	2	n/a	n/a	In Stock
PCB FR4	1	1/18/2023	1/25/2023	Received
Buzzer	1	n/a	n/a	In Stock
Buck Converter	1	2/23/2023	2/23/2023	Received
Push Button	1	n/a	n/a	In Stock
Battery Olight 18650	2	11/24/2022	2/27/2023	Received
Motor DC	1	1/3/2023	3/5/2023	Received
LED	1	n/a	n/a	In Stock
BME280	1	3/23/2023	3/23/2023	Received
Resistor 0805	10	n/a	n/a	In Stock
SD Card	1	2/13/2023	2/13/2023	Received

Ground Station Procurement

Component	Quantity	Order	Receive	Status
RP SMA	2	2/28/2023	3/4/2023	Received
XBee S3B	1	n/a	n/a	In Stock
XBee Adapter	1	n/a	n/a	In Stock
USB Cable	1	n/a	n/a	In Stock
Moxon-Yagi Antenna	1	3/8/2023	3/8/2023	Received

Electronics Components

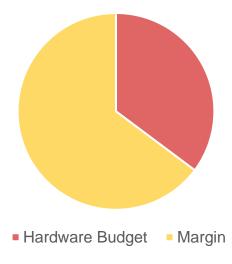
Component	Quantity	Considerations	Unit Cost (\$)	Total Cost (\$)
STM32F407VGT6	1	Actual	25	25
MPU6050	1	Actual	1.34	1.34
BME280	1	Actual	10.02	10.02
BN-220	1	Actual	13.35	13.35
Servo MG90	1	Actual	1.74	1.74
MX 1508 Driver Motor	1	Actual	0.47	0.47
DC Motor	1	Actual	3.34	3.34
SD Card Module	1	Actual	0.6	0.6
Xbee Pro S3B	1	Actual	57.52	57.52
Limit Switch	2	Actual	0.05	0.1
Taoglas Antenna FXP290	1	Actual	17.05	17.05
Camera SQ11	2	Actual	4.01	8.02
SD Card Robot 8GB	2	Actual	3.34	6.68
ON/OFF Switch	2	Actual	0.14	0.28
Micro USB Type B	1	Actual	0.05	0.05
Buzzer 5V	1	Actual	0.1	0.1
LED 3mm	2	Actual	0.03	0.06
Voltage Regulator	2	Actual	0.067	0.134
Olight 18650	2	Actual	25.13	50.26
Battery Charger 18650 (2 Slots)	1	Actual	2.81	2.81
CR2032 Coin Cell	1	Actual	0.17	0.17
PCB	2	Actual	1.05	2.1
Тс	otal Cost Electron	ics Components (\$)		201.194

Mechanics Components

Component	Quantity	Considerations	Unit Cost (\$)	Total Cost (\$)
Carbon Fiber Rod Solid 3mm	10	Actual	0.83	8.3
Carbon Fiber Rod Tube 5mm	1	Actual	2.65	2.65
Bio PLA Resin	1	Actual	13.01	13.01
ABS+	1	Actual	12.09	12.09
Resin Epoxy	1	Actual	15.83	15.83
Ripstop Nylon	1	Actual	1.39	1.39
Chinese Knotting Cord	1	Actual	1.42	1.42
Polycarbonate 300 x 400 x 2 mm	2	Actual	3.88	7.76
Fiberglass Woven Cloth 0,17 x 1200 x 1000mm	1	Actual	1.42	1.42
Torsion Spring	1	Actual	0.32	0.32
Compression Spring	1	Actual	0.65	0.65
Hinges	5	Actual	0.17	0.85
Rubber	1	Actual	0.4	0.4
Flag	1	Actual	0.27	0.27
Bolt	30	Actual	0.03	0.9
Tota	al Cost Mechani	ics Components (\$)		67.26

Ground Station Components

Component	Quantity	Considerations	Unit Cost (\$)	Total Cost (\$)
Moxon-Yagi Antenna	1	Actual	17	17
XBee Pro S3B	1	Actual	57.52	57.52
XBee Adapter	1	Actual	5.27	5.27
USB Cable	1	Actual	1.29	1.29
RP-SMA Cable	1	Actual	2.59	2.59
Total	83.67			



Component	Total Cost (\$)
Total Cost Electronics Components	201.194
Total Cost Mechanics Components	67.26
Total Cost Ground Station Components	83.67
Total Hardware Budget (\$)	352.124

CanSat Requirement Cost – Hardware Budget = Margin

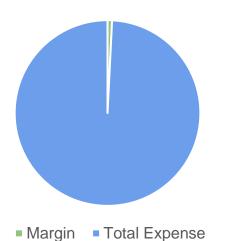
\$ 1000 - **\$** 352.124 = **\$** 647.876

Others Cost

Component	Quantity	Considerations	Unit Cost (\$)	Total Cost (\$)		
Registration	1	Actual	200	200		
Prototyping	1	Estimated	100	100		
Round Trip CGK-IAD Ticket	10 people	Estimated	1,745	17,450		
Round Trip Train Ticket	10 people	Estimated	51.04	510.4		
Visa	10 people	Estimated	160	1,600		
Uniform	15 people	Actual	19.65	294.75		
SIM Card	1 people	Actual	30	30		
Guest House	7 nights	Estimated	100	700		
Bus	10 people	Estimated	86	860		
	Total Other Costs (\$)					

Sources of Income

Sources of Income	Total Cost (\$)
PENS Funding	3,272.36
Sponsorship	19,000
Total Income (\$)	22,272.36



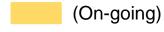
Overall Cost

PDR Phase		CDR	Phase
Categories	Cost (\$)	Categories	Cost (\$)
Total Hardware	341.414	Total Hardware	352.124
Total Other Cost	21,745.15	Total Other Cost	21,745.15
Total Expense (\$)	22,086.564	Total Expense (\$)	22,097.27

Overall Margin

Income – Total Expense = **Margin** 22,272.36 - 22,097.27 = **175.09**

Program Schedule Overview


CANSAT PROJECT SCHEDULE

Cansat 2023

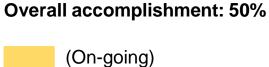
Project Start Date: 01-Oct-22 Project Leader: Fatwa Aulia PM=Project Manager MC=Mechanical WM=Web Master AD=Administration HW=Hardware BT=Brand SS=Sponsorship SW=Software

Task	Assign	Start	End	Days	Status	% Complete	S	Sep	Oct	No	v	De	С	Ja	an	F	Feb	Mar	Apr	May	Jun	
Summary																						
Team Member Recruitment	ALL	1-Sep-22	27-Sep-22	26	Completed	100%																
Internal Funding	AD	27-Sep-22	27-Sep-22	1	Completed	100%																Γ
Middle 1st Semester Exam	ALL	3-Oct-22	7-Oct-22	4	Exam	100%																
PDR Preparation	ALL	10-Oct-22	27-Jan-23	109	Completed	100%																Τ
Procurement of Components & Materials	HW, MC,SW	10-Oct-22	30-Mar-23	171	Completed	100%																٦
Sponsorship	AD, SS, BT	14-Oct-22	25-May-23	223	On-going	75%																٦
EEPISAT's Website Developing	WM	14-Oct-22	18-Jun-23	247	On-going	68%																
Registration	PM	4-Nov-22	4-Nov-22	1	Completed	100%																
Final 1st Semester Exam	ALL	21-Nov-22	25-Nov-22	4	Exam	100%																
Team Member Vacation	ALL	25-Dec-22	19-Feb-23	56	Completed	100%																
PDR Submission	PM	1-Feb-23	1-Feb-23	1	Completed	100%																Τ
CDR Preparation	ALL	1-Feb-23	1-Apr-23	59	Ongoing	98%																٦
System Integration	ALL	1-Mar-23	25-May-23	85	Ongoing	36%																
CDR Submission	PM	1-Apr-23	1-Apr-23	1	Upcoming	0%																
Mid 2nd Semester Exam	ALL	3-Apr-23	6-Apr-23	3	Exam	0%																
System Improvement	ALL	3-Apr-23	25-May-23	52	Upcoming	0%																
Final 2nd Semester Exam	ALL	22-May-23	26-May-23	4	Exam	0%																
Enviromental Test Submission	ALL	26-May-23	26-May-23	1	Upcoming	0%																
CanSat Shipping	ALL	29-May-23	29-May-23	1	Upcoming	0%																
FRR (Flight Readiness Review)	ALL	9-Jun-23	9-Jun-23	1	Upcoming	0%																
Competition	ALL	8-Jun-23	11-Jun-23	3	Upcoming	0%																
PFR	PM	11-Jun-23	11-Jun-23	1	Upcoming	0%																

Overall accomplishment: 54%

(Exam)

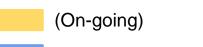
(Upcoming)



Task	Assign	Start	End	Days	Status	% Complete	Oct	No	V	v Dec Jan				i	⁻ eb	M	lar	/	Apr	May	Jun
Mechanical																					
Mission Guide Study	MC	1-Oct-22	8-Oct-22	7	Completed	100%															
Middle 1st Semester Exam	ALL	3-Oct-22	7-Oct-22	4	Exam	100%															
Prototype Manufacturing	MC	4-Oct-22	1-Nov-22	28	Completed	100%															
Material Trade	MC	9-Oct-22	31-Oct-22	22	Completed	100%															
Cansat 1st Design	MC	9-Oct-22	5-Dec-22	57	Completed	100%															
Procurement of Materials	MC	10-Oct-22	30-Mar-23	171	Completed	100%															
Prototype Testing	MC	29-Oct-22	2-Dec-22	34	Completed	100%															
Cansat 2nd Design	MC	10-Nov-22	27-Dec-22	47	Completed	100%															
Final 1st Semester Exam	ALL	21-Nov-22	25-Nov-22	4	Exam	100%															
Team Member Vacation	ALL	25-Dec-22	19-Feb-23	56	Completed	100%															
Mass Budget Calculate	MC	4-Jan-23	10-Jan-23	6	Completed	100%															
System Integrating	MC	1-Mar-23	25-May-23	85	Ongoing	36%															
Mid 2nd Semester Exam	ALL	03-Apr-23	6-Apr-23	3	Exam	0%															
System Improvement	MC	3-Apr-23	25-May-23	52	Upcoming	0%															
System Testing	MC	15-Apr-23	29-Apr-23	14	Upcoming	0%															
Final 2nd Semester Exam	ALL	22-May-23	26-May-23	4	Exam	0%															

Assign to: Artaka Sunu Adhi Prasetya (MC)

(Mechanical)



Task	Assign	Start	End	Days	Status	% Complete	C	Oct		Nov		De	с	Jan	Fe	b	M	ar	Apr	May	Jun	
Hardware	Hardware																					
Mission Guide Study	нw	1-Oct-22	8-Oct-22	7	Completed	100%																
Middle 1st Semester Exam	ALL	3-Oct-22	7-Oct-22	4	Exam	100%																
Component Trade	нw	9-Oct-22	12-Nov-22	34	Completed	100%																
Procurement of Components	MC	10-Oct-22	30-Mar-23	171	Completed	100%																
Payload PCB Design	нพ	20-Oct-22	30-Nov-22	41	Completed	100%																
XBEE Communication Test	нพ	21-Oct-22	1-Nov-22	11	Completed	100%																
Electrical Prototype Test	нw	10-Nov-22	1-Dec-22	21	Completed	100%															\square	
Component Testing	нw	12-Nov-22	1-Dec-22	19	Completed	100%																
Final 1st Semester Exam	ALL	21-Nov-22	25-Nov-22	4	Exam	100%										\square					\square	
Flight Algorithm	HW	1-Dec-22	4-Jan-23	34	Completed	100%																
Team Member Vacation	ALL	25-Dec-22	19-Feb-23	56	Completed	100%																
Camera Tracking Test	нw	15-Feb-23	16-Mar-23	29	Completed	100%																
System Integrating	HW	1-Mar-23	25-May-23	85	Ongoing	36%																
Mid 2nd Semester Exam	ALL	3-Apr-23	6-Apr-23	3	Exam	0%																
System Improvement	нw	3-Apr-23	25-May-23	52	Upcoming	0%																
System Testing	нw	15-Apr-23	29-Apr-23	14	Upcoming	0%																
Final 2nd Semester Exam	ALL	22-May-23	26-May-23	4	Exam	0%																

Assign to: Achmad Bagus Okto Faerizqi (HW)

Overall accomplishment: 50%

(Hardware)

(Upcoming)

Task	Assign	Start	End	Days	Status	% Complete	C	Oct		Nov	,	De	c	J	an	F	eb	1	Mar	Apr	Ma	у	Ju	ın
Software																								
Mission Guide Study	SW	1-Oct-22	8-Oct-22	7	Completed	100%																		\square
Middle 1st Semester Exam	ALL	3-Oct-22	7-Oct-22	4	Exam	100%																		
GCS Design	SW	9-Oct-22	27-Dec-22	79	Completed	100%																		
Antenna Trade	SW	17-Oct-22	28-Oct-22	11	Completed	100%																		
Improve Antenna Design	SW	31-Oct-22	27-Dec-22	57	Completed	100%																		
Final 1st Semester Exam	ALL	21-Nov-22	25-Nov-22	4	Exam	100%																		
Team Member Vacation	ALL	25-Dec-22	19-Feb-23	56	Completed	100%																		
Antenna Manufacturing	SW	26-Feb-23	20-Mar-23	22	Completed	100%																		
System Integrating	SW	1-Mar-23	25-May-23	85	Ongoing	36%																		
Antenna Range Test	SW	1-Apr-23	30-Apr-23	29	Upcoming	0%																		
Mid 2nd Semester Exam	ALL	3-Apr-23	6-Apr-23	3	Exam	0%																		
System Improvement	SW	3-Apr-23	25-May-23	52	Upcoming	0%																		
System Testing	SW	15-Apr-23	29-Apr-23	14	Upcoming	0%																		
Final 2nd Semester Exam	ALL	22-May-23	26-May-23	4	Exam	0%																		

Assign to: Muhammad Tsaqif Mukhayyar (SW)

Overall accomplishment: 50%

	Transportation											
Person	Surabaya – Jakarta: Indonesian Train Jakarta – Washington, D.C.: American Airlines Washington, D.C. – Blacksburg: Bus	American Airlines										
	Shipping											
Cansat and Tools	Surabaya – Charlotte: Cargo (FedEx) Shipping Address 1: Committee Office Shipping Address 2: Indonesian Embassy in Washington, D.C.	FedEx _®										

Notes:

• In order to minimize trouble for transporting the tools and CanSat, we will send one set of the CanSat and tools using cargo service and another set carried along with us aboard.

Conclusions (1/2)

Division	Major Accomplishments	Major Unfinished Work	Testing to Complete
Mechanical	 Major mechanism has been tested Several environmental test has been completed 	 Overall system integration Design improvement based on testing results 	Environmental test
Hardware	 All sensors have been tested XBEE Communication test completed 	 Overall system integration 	-
Software	 GUI Design Completed Antenna has been built and tested Flight software status has been developed and tested 	Overall system integration	-
Administration & Sponsorship	 Sponsorship and partnership contracted Travel and shipment plans have been established 	 Waiting for other sponsors 	-
Brand Team & Web Master	 Official social media still active New generation website development 	 Developing the social media and website promotion 	-

Conclusions (2/2)

Bamantara EEPISAT Are Ready to Proceed to The Next Stage of Development

- Critical Design Phase is completed for mechanical, software, and electronic systems.
- Major mechanisms has been tested and there will be further improvements to make sure all mechanisms works well.
- Travel and shipment plans have been established for competition day in Virginia Tech, Blacksburg, VA.