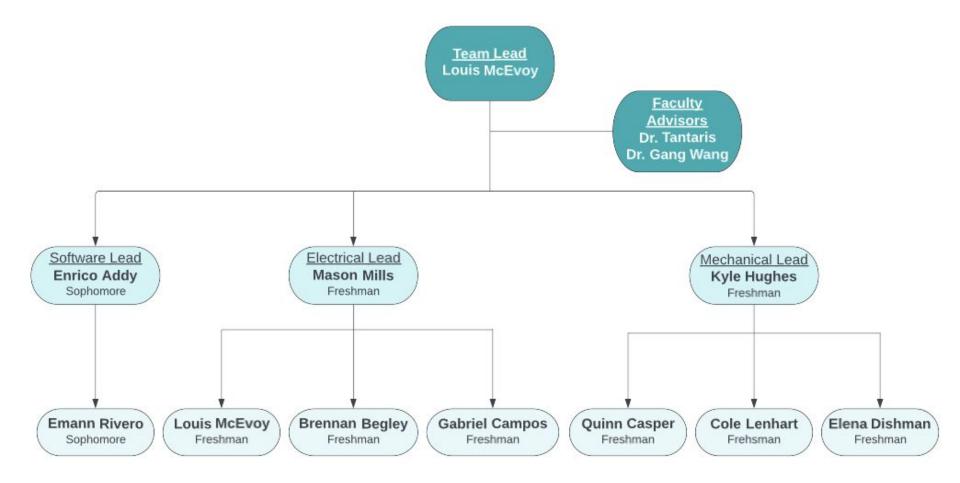


CanSat 2023 Critical Design Review (CDR) Outline Version 1.0

1079 Afterburner



Section	Presenter	Slides
Introduction	Louis McEvoy	1-8
Systems Overview	Louis McEvoy	9-24
Sensor Subsystem Design	Gabriel Campos	25-34
Descent Control Design	Quinn Casper	34-47
Mechanical Subsystem Design	Elena Dishman/Kyle Hughes/Cole Lenhart	87-79
Communication and Data Handling Subsystem Design	Brennan Begley/Emann Rivero	80-90
Electrical Power Subsystem Design	Mason Mills	91-97
Flight Software Design	Emann Rivero	98-104
Ground Control System Design	Enrico Addy	105-114
CanSat Integration and Test	Cole Lenhart	115-135
Mission Operations & Analysis	Brennan Begley	136-144
Requirements Compliance	Louis McEvoy	145-155
Management	Louis McEvoy	156-174

Team Organization

Acronym	Explanation	
ADC	Analog to Digital Converter	
API	Application Programming Interface	
ARM	Advanced RISC (Reduced Instruction Set Computer) Machine	
°C	Degree Celsius	
C _D	Coefficient of Drag	
CDH	Command Data Handler	
CDR	Critical Design Review	
cm	Centimeter	
CMD	Command	
CSV	Comma Separated Values	
dBi	Decibel Relative to Isotrope	
dBm	Decibel Milliwatts	

Acronym	Explanation
EPS	Electrical Power Subsystem
EEPROM	Electrically Erasable Programmable Read-Only Memory
FPS	Frames per Second
FSW	Flight Software
G	Gravitational Shock
g	Grams
GHz	Gigahertz
GND	Ground
GPS	Global Positioning System
GS	Ground Station
hPa	Hectopascals
Hz	Hertz

Acronym	Explanation	
I2C	Inter-Integrated Circuit	
IDE	Integrated Development Environment	
КВ	Kilobytes	
kg	Kilograms	
kPa	Kilopascals	
L1	Level One	
LED	Light Emitting Diode	
m	Meter	
m/s	Meters per Second	
mA	Milliamps	
mAh	Milliamp Hours	
MCU	Microcontroller Unit	

Acronym	Explanation	
MHz	Megahertz	
mm	Millimeter	
MOSFET	Metal Oxide Semiconductor Field Effect Transistor	
N/A	Not Available	
ns	Nanosecond	
Pa	Pascals	
PCB	Printed Circuit Board	
PETG	Polyethylene Terephthalate Glycol	
PWM	Pulse Width Modulation	
RAM	Random Access Memory	
RP	Raspberry Pi	

Acronym	Explanation	
RTC	Real-Time Clock	
SD	Secure Digital	
SPI	Serial Peripheral Interface	
UART	Universal Asynchronous Receiver-Transmitter	
UTC	Coordinated Universal Time	
V	Volts	
v	Velocity	
VDC	Voltage Dividing Circuit	
VSWR	Voltage Standing Wave Ratio	
Wh	Watt Hours	
yd	Yard	
ρ	Density (kg/m ³)	

System Overview

Louis McEvoy

Main O	bjectives

Design a CanSat that will consist of a container and probe and simulate the landing sequence of a planetary probe.

1	The CanSat will separate from the rocket between 670 and 725 meters and descend under a parachute at 15 meters per second.			
2	At 500 meters the CanSat will	release a probe that will deploy an aerobraking heat shield.		
3	Once the probe reaches 200 r second.	neters, the probe will deploy a parachute and descend at a rate of 5 meters per		
4	Upon landing, the probe will u	pright itself and raise a flag 500 millimeters above the base of the probe.		
5	5 A video camera on the probe will point toward the ground to record the descent.			
6	6 The probe will transmit all required telemetry and relay sensor data to the ground station.			
		Bonus Objective		
cam	The container shall contain a camera that will record the probe deployment and its descent. Rationale: Team Afterburner has experience working with small onboard cameras aboard CanSats and are interested in using the video for evaluation an outreach.			

Summary of Changes Since PDR (1 of 2)

Sub-Team	System	PDR	CDR	Reasoning
	Heat Shield Deployment System	Single servo driven linkage assembly	Dual servo driven heat shield for deployment and uprighting	 Reduced mass over previous system Lowers center of mass to improve stability Reduced backlash
Mechanical	Parachute Container	Spring loaded parachute container	Increased parachute container volume	 Increases parachute reliability Decreases parachute opening time
	Flag Raising Mechanism	Spring loaded baton	Tape measure flag raising design	 Flag now resistant to wind shear Easier actuation
	Electronics Package Location	Inside electronics housing	Electronics package inside of deployment system	 Lower center of mass Easy access to connectors

Summary of Changes Since PDR (2 of 2)

Sub-Team	System	PDR	CDR	Reasoning
	Sensor Subsystem	BMP390	BMP388	 BMP390 was not available for purchase
Electrical	Electrical Power Subsystem	1 Analog Feedback Servo	2 MG90 360° Servos	 Revised heat shield design requires two 360° servos
Software	Ground Control System (GCS)	Location Tracking implemented using QPixMap	Location Tracking implemented using Folium	 Interactive map of GPS coordinates Live updating of map elements
	Flight Software (FSW)	Progressive command interpretation	Simultaneous command interpretation	 Reduced probability of late commands
	Flight Software (FSW)	Unified Functions	Modularized Functions	 Reduced the code's complexity and improved readability

System Requirement Summary (1 of 4)

Req.	Description	Subsystem	Verification Method			
#	Description	Subsystem	Α	I	Т	D
1	Total mass of the CanSat (science probe and container) shall be 700 grams \pm 10 grams.	MECH	x	x		
2	CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.	MECH	x		x	
3	The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.	MECH	x		x	
4	The parachutes and container shall be fluorescent pink or orange.	MECH		x		
5	Rocket airframe shall not be used in CanSat operations or to restrain any deployable systems.	MECH	x	x		
6	The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5 m/s.	MECH	x		x	x
7	0 altitude reference shall be at the launch pad.	FSW	x		x	
8	All structures shall withstand 15 Gs of launch acceleration as well as 30 Gs of Shock.	MECH			x	x
9	All electrical and mechanical components shall be hard mounted.	MECH,EPS	X	X		

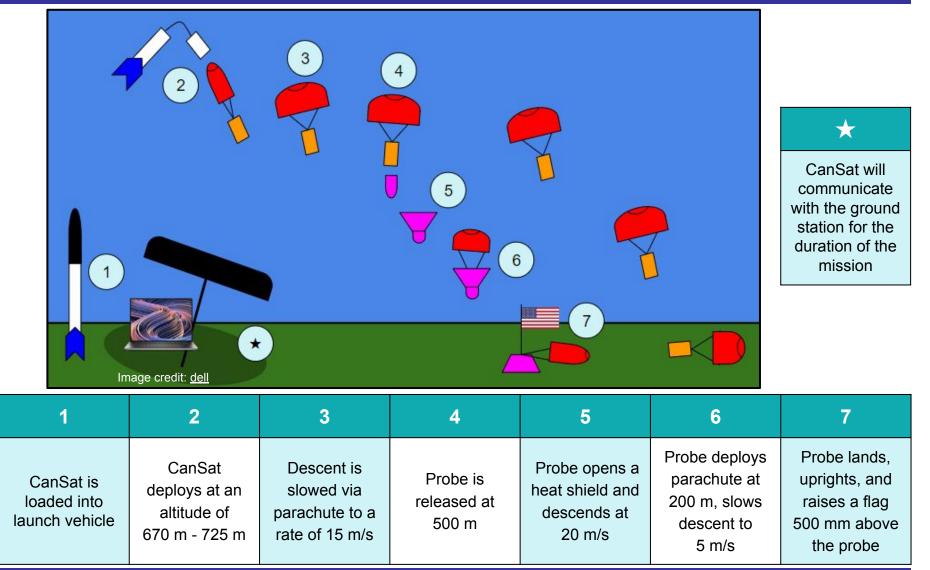
System Requirement Summary (2 of 4)

Req.	Description	Subovotom	Verification Method			
#	Description	Subsystem	Α	I	т	D
10	Cost of CanSat shall be under 1000 dollars.	MANAGEMENT	x	x		
11	2.4 GHz or 900 MHz XBee Radios shall be used for telemetry and set to not to broadcast mode.	CDH		x		
12	Probe and container must contain power switches that can be accessed in the stowed configuration.	MECH	x	x		
13	Probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the CanSat and in the stowed state. The probe requires an audio beacon to be activated after landing.	EPS	x	x		x
14	An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.	EPS, MECH	x			x
15	CanSat shall survive all required environmental tests as established in the mission guide.	EPS, MECH			x	x
16	The CanSat shall operate for a minimum of two hours when integrated into the rocket.	EPS	x		x	x

System Requirement Summary (3 of 4)

Req.	Description	Quihaustarr	Veri	ficatic	on Met	hod
#	Description	Subsystem	A	I	т	D
17	The probe shall be released from the container when the CanSat reaches 500 meters and deploy a heat shield.	EPS, MECH, FSW			x	x
18	Heat shield will limit probe descent rate to 20 m/s or less.	EPS, MECH, FSW			X	X
19	At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s ±1 m/s.	EPS, MECH, FSW			x	x
20	Once landed, the probe shall upright itself.	EPS, MECH, FSW			х	x
21	After uprighting, the probe shall deploy a flag 500 mm above the base of the probe.	EPS, MECH, FSW			x	x
22	The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked.	CDH, FSW	X			x
23	The probe shall include a downward facing video camera to record the flight of the probe from release to landing.	EPS	x		x	
24	Probe will maintain packet count, mission time, and configuration state through processor resets.	FSW	X			x

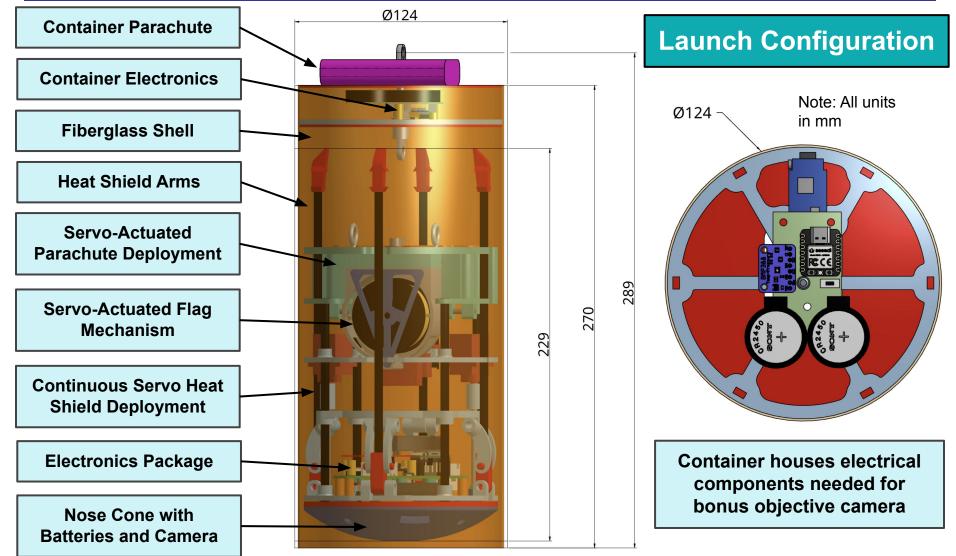
System Requirement Summary (4 of 4)



Req.	. Description		Veri	ficatio	on Met	hod
#	Description	Subsystem	Α	I	т	D
25	The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile CSV file.	FSW	X			x
26	In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the container altitude.	FSW	x			x
27	The container flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.	FSW	X			x
28	The ground station shall generate CSV files of all sensor data as specified in the Telemetry Requirements section.	CDH, GCS	X			x
29	Each team shall develop their own ground station.	GCS		x		x
30	All telemetry shall be displayed in real time during descent to the ground and plot each data field in real time.	GCS		x		x
31	All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.).	GCS		x	x	
32	Container shall include a camera to satisfy the bonus objective.	EPS	X			x

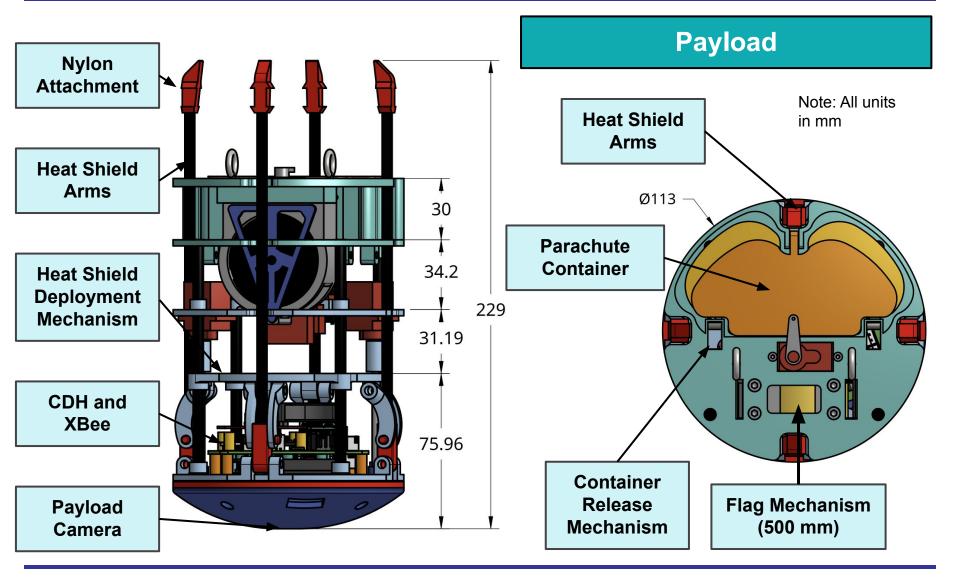
System Concept of Operations (1 of 2)

Team Roles and Responsibilities:

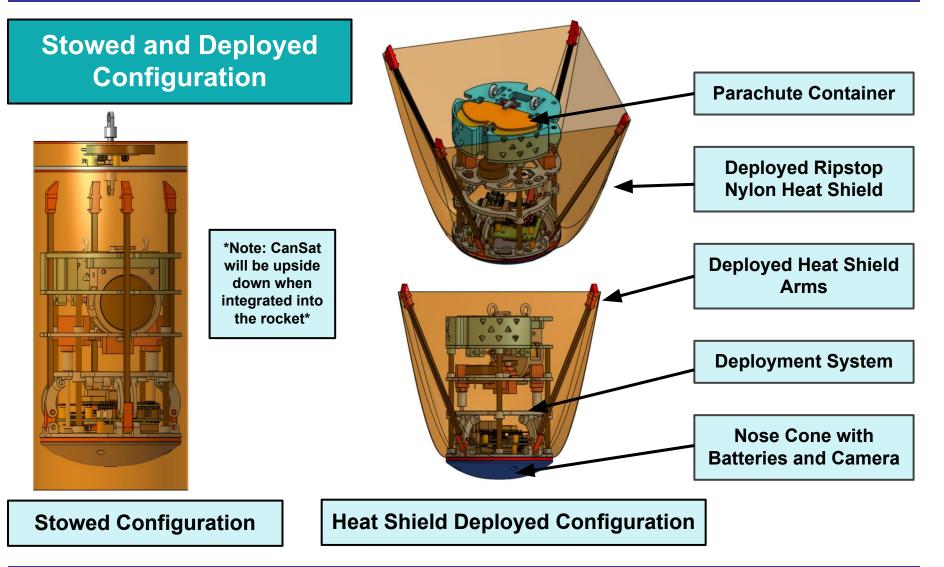

- Everyone on the team will be contributing to the events of launch day
- The Mission Operation Manual lays out the events that the team will follow

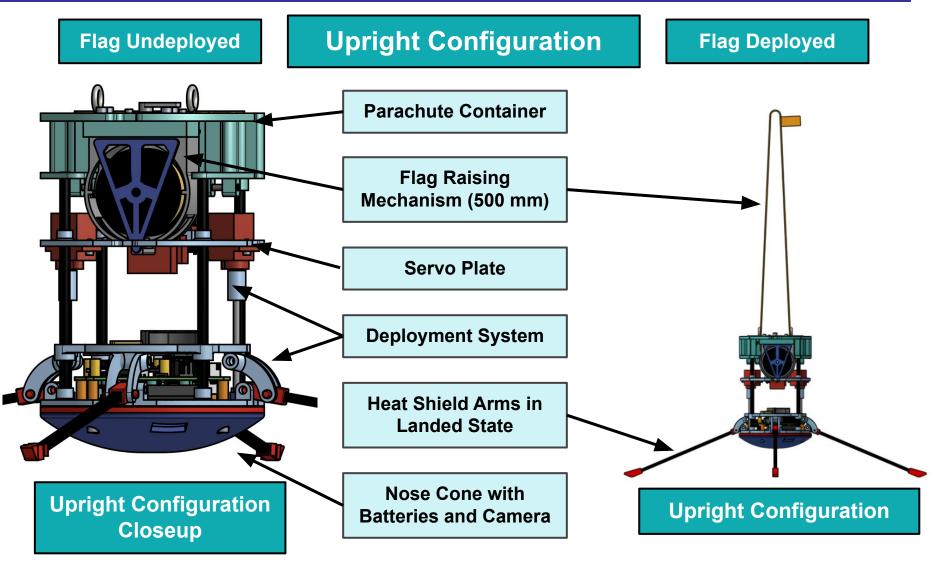
Team	Description	Personnel
Mission Control Officer	Responsible for informing flight coordinator when their team and CanSat is ready to be launched.	Louis McEvoy
Ground Station Team	Responsible for monitoring the ground station for telemetry reception and issuing commands to the CanSat.	Enrico Addy, Emann Rivero
Recovery Team	Responsible for tracking the CanSat and going out into the field for recovery and interacting with the field judges. This team is responsible for making sure all field scores are filled in.	Brennan Begley, Mason Mills
CanSat Team	Responsible for preparing the CanSat, integrating it into the rocket, and verifying its status.	Gabriel Campos, Quinn Casper, Elena Dishman, Kyle Hughes, Cole Lenhart

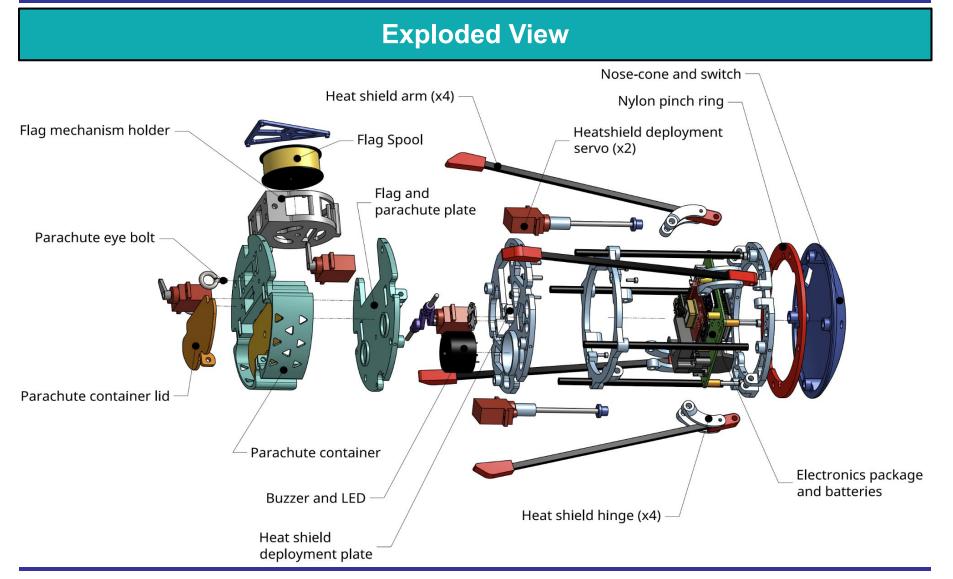
Physical Layout (1 of 5)

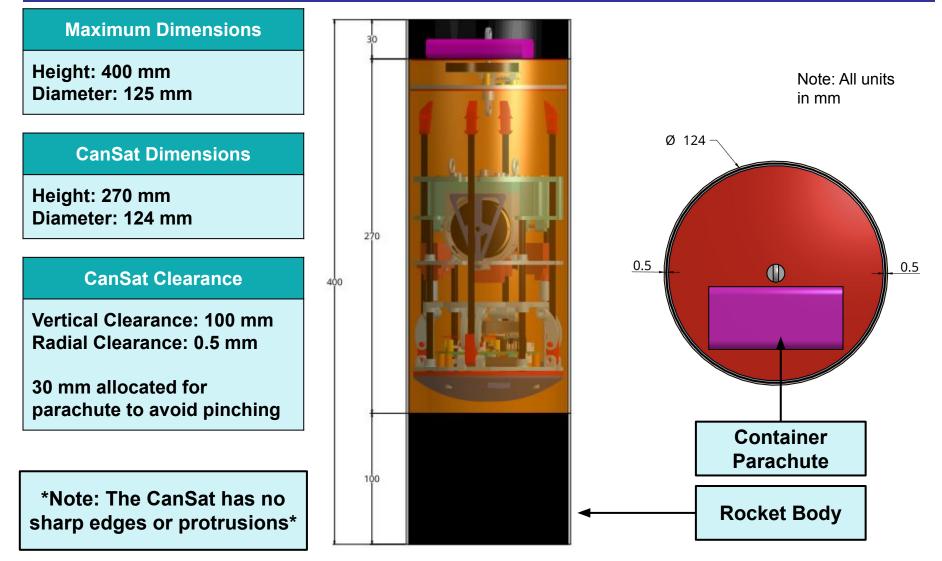


Physical Layout (2 of 5)




Physical Layout (3 of 5)

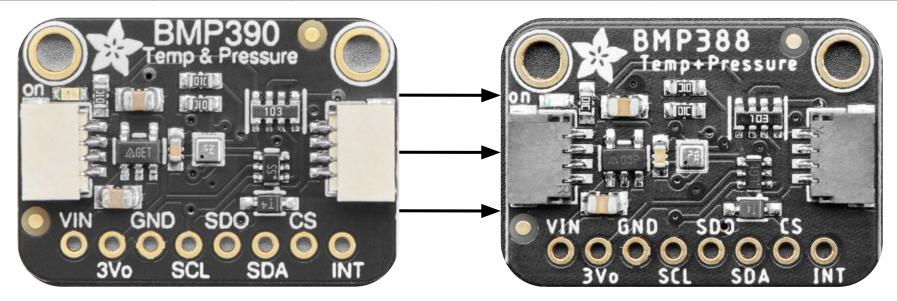




Launch Vehicle Compatibility

Sensor Subsystem Design

Gabriel Campos



Required	Sensor	Purpose
Air Pressure	BMP388	Provide altitude data that is used to trigger the different flight states of the payload, as well as provide pressure data
Air Temperature	BMP388	Provide temperature data
GPS	SAM - M8Q	Provide location of CanSat, aiding in payload recovery
Battery Voltage	Analog Digital Converter of MCU	Provide status of the batteries' voltage, aiding in troubleshooting of electrical systems
Orientation	BNO055	Provide the orientation of the payload used to self right, and provide telemetry of the payload acceleration in 3D space
Video Adafruit Spycamera		Record video for the duration of the mission which is to be viewed afterwards to aid in data analysis

Data Collected	PDR Sensor	CDR Sensor	Reason for Change	Rationale
Pressure	BMP390	BMP388	BMP390 was not available for purchase	 Comparable accuracy to BMP390 (±0.5 m vs. ±0.25 m) Identical size and pinout of BMP390
Temperature	BMP390	BMP388	BMP390 was not available for purchase	 Equivalent accuracy to BMP390

Payload Air Pressure Sensor Summary

Module	Accuracy	Measurement Range (hPa)	Max Current Draw (mA)	Voltage (V)	Mass (g)	Interface	Price (\$)
BMP388	± 8 pascals/ ±0.50 meters	300-1250	0.700	3.3	1.0	I2C	9.95

Example Code

Adafruit_BMP3XX bmp; #define SEALEVELPRESSURE_HPA (1013.25) float a = bmp.readAltitude(SEALEVELPRESSURE_HPA); Altitude = float(a - padAlt); Pressure = bmp.pressure/1000;

Output

Altitude = X.X m Pressure = X.X kPa

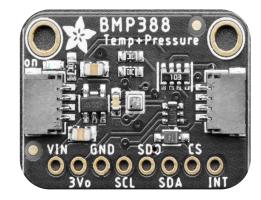


Image credit: adafruit.com

Rationale:

- <1 mA max current draw
- ±0.50 m accuracy
- Built in temperature sensor

Payload Air Temperature Sensor Summary

Module	Typical Accuracy (℃)	Measurement Range (°C)	Max Current Draw (mA)	Voltage (V)	Mass (g)	Interface	Price (\$)
BMP388	± 0.50	0-65	0.300	3.3	1.0	I2C	9.95

Example Code

Adafruit_BMP3XX bmp; Temperature = bmp.temperature;

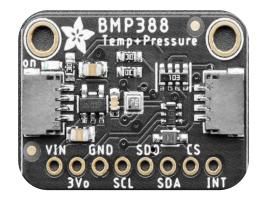


Image credit: adafruit.com

Rationale:

- Integrated into pressure sensor
- Low total area and mass
- ± 0.50 °C accuracy

Output

Temperature = X.X C

Payload GPS Sensor Summary

Sa a a a

Module	Accuracy (m)	Max Current Draw (mA)	Hot Start Acquisition (s)	Mass (g)	Voltage (V)	Interface	Price (\$)
SAM-M8Q	2.5	29	~1	12	3.3	UART	42.95

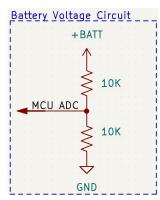
Example Code	
#include <sparkfun_u-blox_gnss_arduino_library.h></sparkfun_u-blox_gnss_arduino_library.h>	
SFE_UBLOX_GNSS myGNSS; GPS_Time = (myGNSS.getHour() : myGNSS.getMinute() : myGNSS.getSecond());	
GPS_Altitude = myGNSS.getAltitude();	
GPS_Latitude = myGNSS.getLatitude();	
GPS_Longitude = myGNSS.getLongitude(); GPS_Sat = myGNSS.getSIV();	Image credit: <u>Sparkfun.com</u>

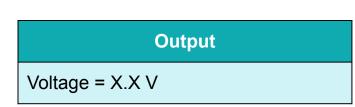
Output

Time= hh:mm:ss Altitude= X.X m Latitude= X.XXXX ° Longitude= X.XXXX° Satellites= X

Rationale:

- **Quick satellite acquisition**
- Internal antenna
- 2.5 m precision


Payload Voltage Sensor Summary



Module	Dimension (mm)	Mass (g)	Accuracy (V)	Measurement Range (V)		Max Current Draw (mA)	Price (\$)
Analog Digital Converter of MCU	5.0 x 5.0 x 2.0	<0.5	±0.2	0-6.6	Analog	<1	0.50

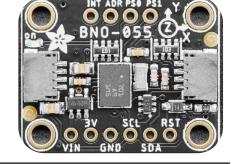
Example Code

int sensorValue = analogRead(A0); float voltage = sensorValue * (3.3 / 1023.0);

Rationale:

- Integrated into the MCU
- Only requires two resistors
- Small and lightweight
- Low additional cost

Payload Tilt Sensor Summary



Module	Max Curren Draw (mA)		GyroscopeMagnetometerAccuracy (°)Accuracy (°)			
BNO055	29	±	0.97 ± 2.50		± 0.02	2
Mass (g)	Volt	age (V)	Int	terface	Price (\$)	
1.0		3.3	I2C 34.95		34.95	

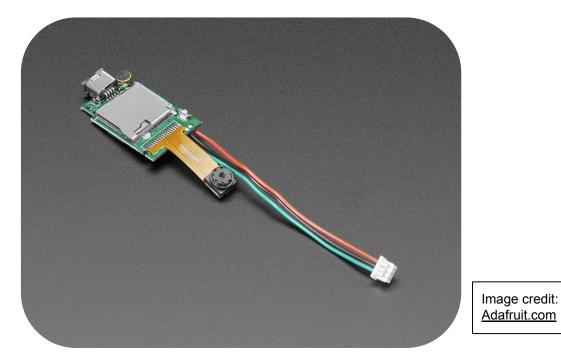
Example Code
<pre>#include <adafruit_bno055.h> Adafruit_BNO055 bno = Adafruit_BNO055(55, 0x28, &Wire); bno.getEvent(&orientationData, Adafruit_BNO055::VECTOR_EULER); event->type == SENSOR_TYPE_ORIENTATION); x = event->orientation.x; y = event->orientation.y;</adafruit_bno055.h></pre>

Output

X Tilt = X.X ° Y Tilt = X.X °

Rationale:

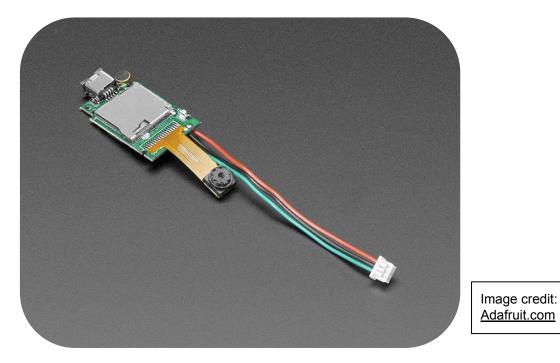
Image credit: Adafruit.com


- Well documented libraries
- Easy to integrate with other Adafruit sensors
- Four point quaternion angles

Camera Summary

Module	Resolution/ Frame Rate	Max Current Draw (mA)	Voltage (V)	Mass (g)	Interface	Price (\$)
Adafruit Spycamera	640 x 480 / 30 fps	110	3.7 - 5.0	2.8	Digital	12.50

Rationale:


- Embedded SD card reader
- Resolution fulfills requirements
- Prior experience using sensor

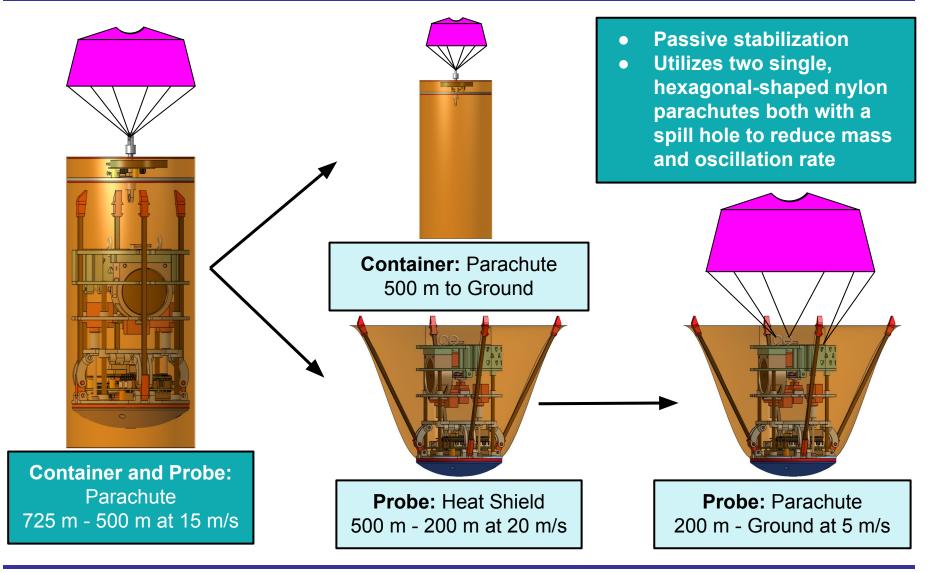
Presenter: Gabriel Campos

Module	Resolution/ Frame Rate	Max Current Draw (mA)	Voltage (V)	Mass (g)	Interface	Price (\$)
Adafruit Spycamera	640 x 480 / 30 fps	110	3.7 - 5.0	2.8	Digital	12.50

Rationale:

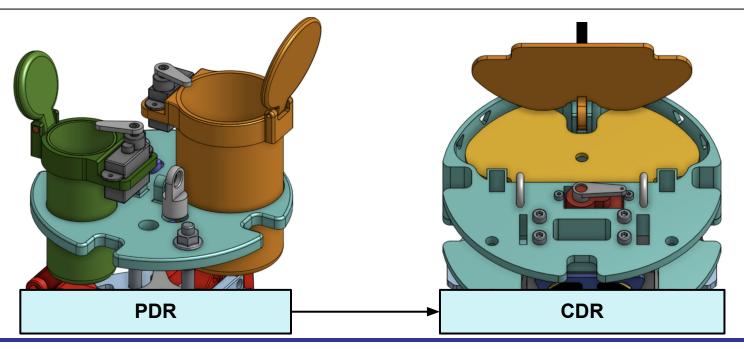
- Embedded SD card reader
- Resolution fulfills requirements
- Prior experience using sensor

Presenter: Gabriel Campos


Descent Control Design

Quinn Casper

Descent Control Overview

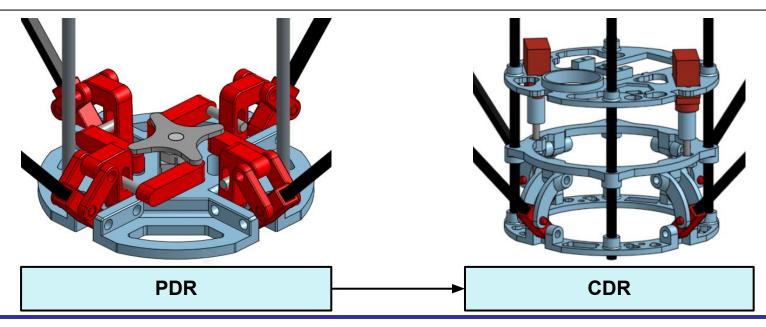

Parachute Descent

Changes:

- Increased parachute container volume by 31,020 mm³ after drop testing results
- Payload parachute deployment area increased by 2,586 mm²

Rationale:

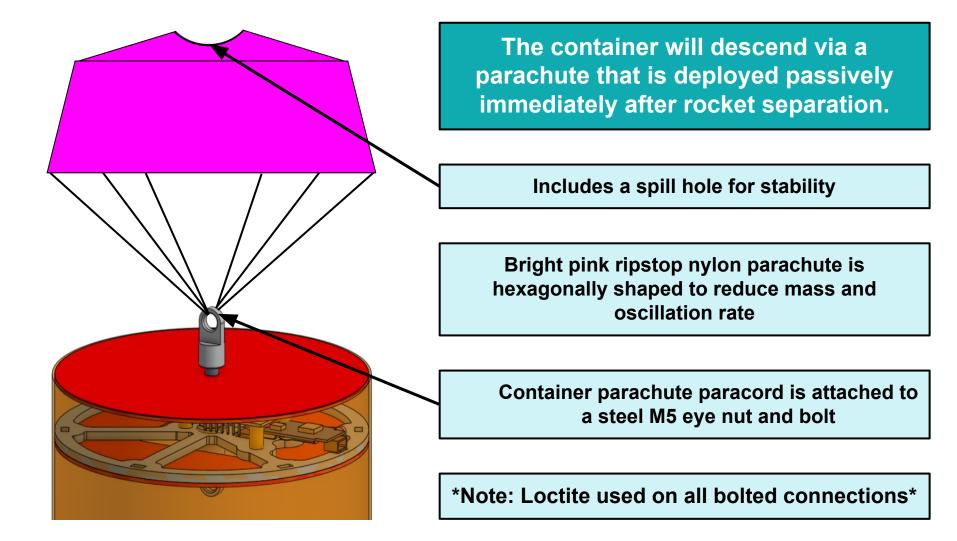
- Increased parachute storage
- Decreases parachute deployment time


Aerobrake Deployment

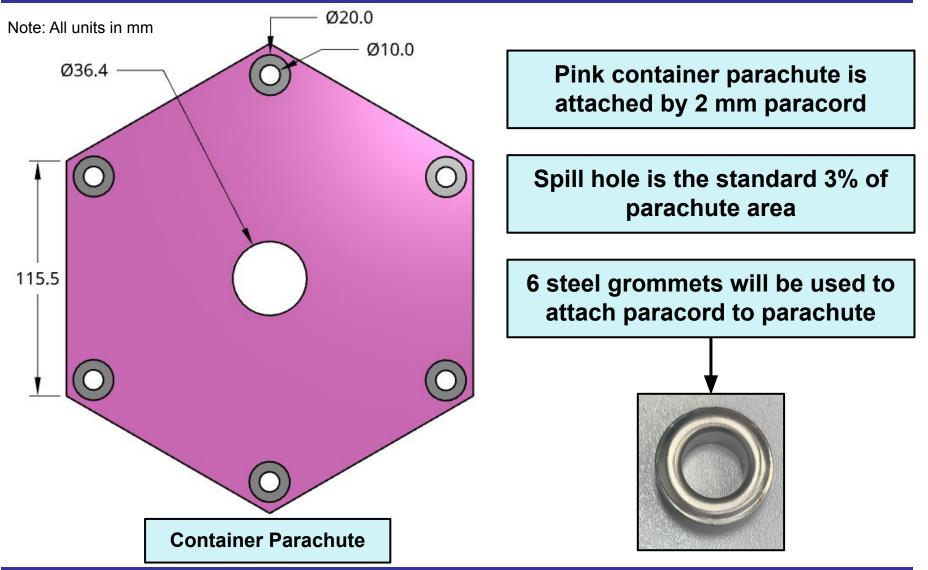
Changes:

• Aerobraking and uprighting heatshield arms now powered by two servos with two linkages per arm as opposed to one servo with four linkages per arm

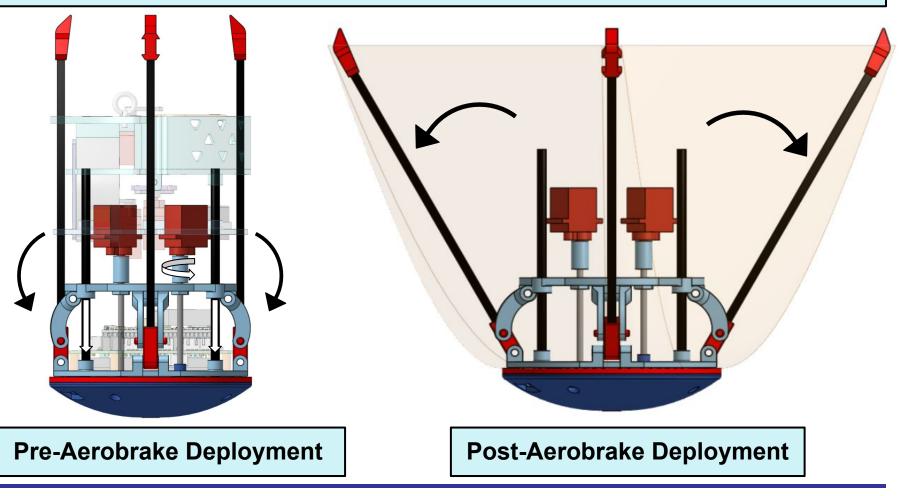
Rationale:


- Increased system torque for heat shield deployment
- Lowered center of mass
- Reduced backlash

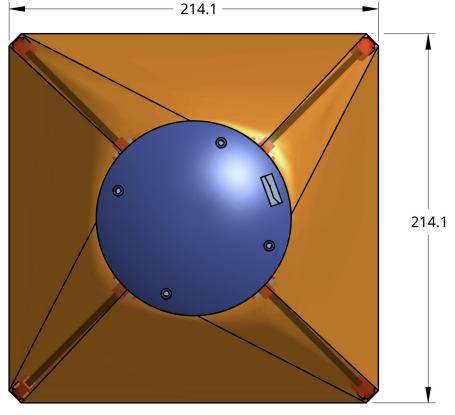
Container Descent Control Hardware Summary (1 of 2)



Container Descent Control Hardware Summary (2 of 2)



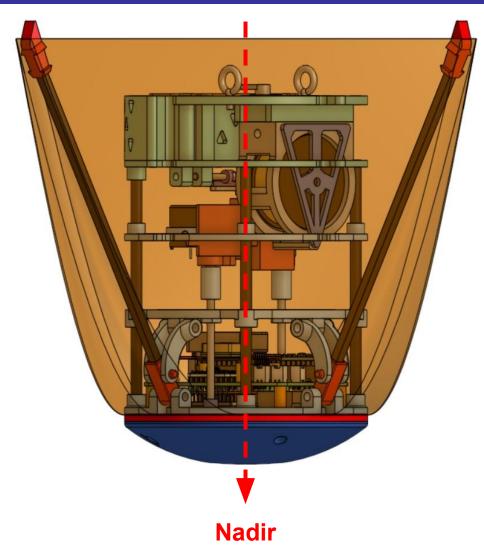
Dual-servo deployment mechanism actuates 180 mm carbon composite arms to a 30° heat shield angle to increase surface area while providing passive stabilization



Note: All units in mm

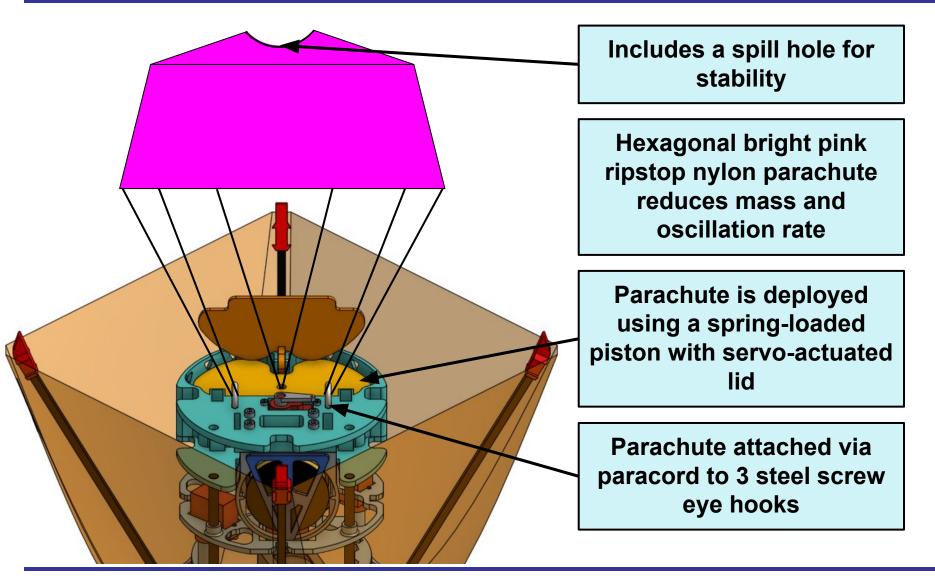
Payload Aerobraking Descent Control Hardware Summary (2 of 2)

205.7 23.0 113.0


Heat shield utilizes bright orange ripstop nylon aerobraking heat shield

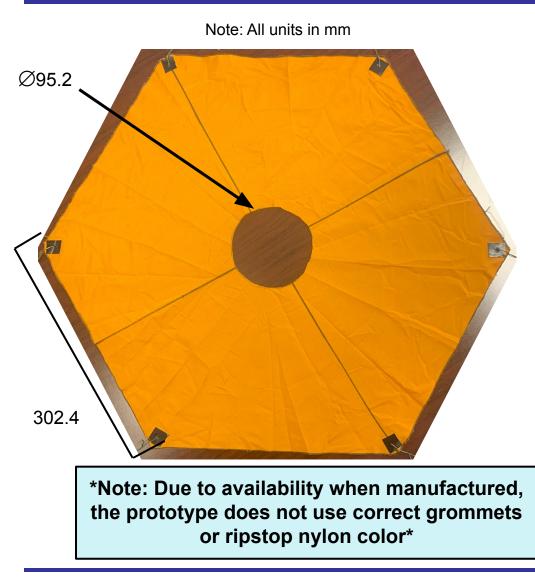
Aerobraking Area of 45,839 mm²

Payload Descent Stability Control Design


Passive stability control

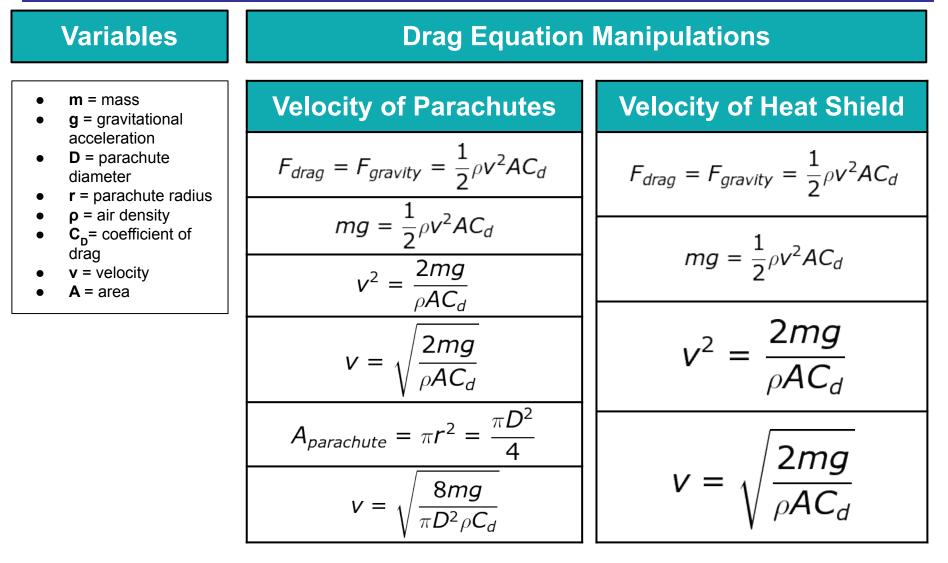
Low center of mass keeps probe facing nadir direction and prevents tumbling

Sliding plate actuated by servos via threaded rods, which move aerobraking arms downward, thus increasing the heat shield surface area



Payload Parachute Descent Control Hardware Summary (2 of 2)

Probe parachute is attached by 2 mm paracord


Spill hole is the standard 3% of parachute area

6 steel grommets will be used to attach paracord to parachute

Assumptions & Variables

- CanSat is 700 g
- Probe is 540 g
- Heat shield is a square truncated pyramid
- Heat shield area is larger due to having four attachment points

Selected Configuration Calculations and Summary

Container Parachute

$$v = \sqrt{\frac{8(0.7kg)(9.81\frac{m}{s^2})}{\pi(0.21m)^2(1.3\frac{kg}{m^3})(1.5)}} \approx 14.3\frac{m}{s}$$

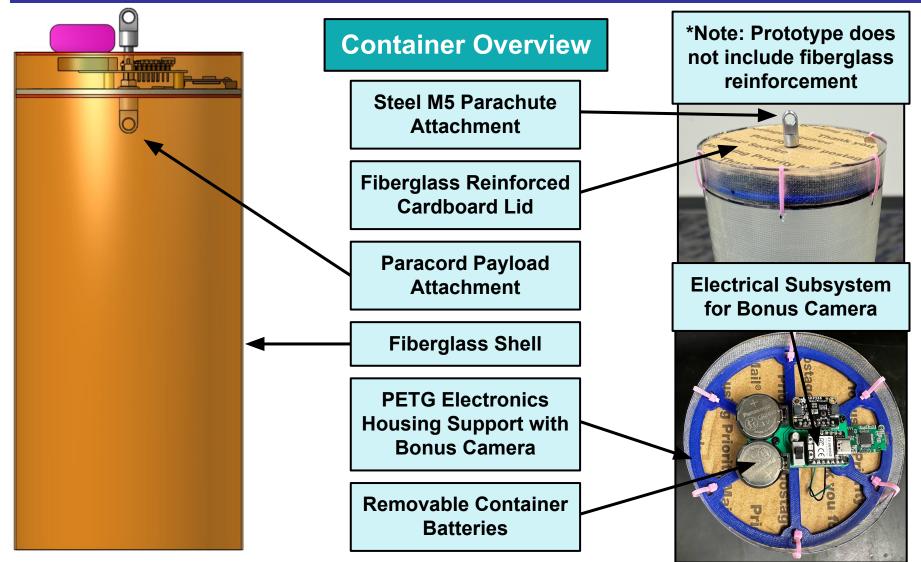
Probe Aerobraking Heatshield

$$v = \sqrt{\frac{2(0.54kg)(9.81\frac{m}{s^2})}{(1.3\frac{kg}{m^3})(4.25*10^{-2}m^2)(0.667)}} \approx 17.0\frac{m}{s}$$

Probe Parachute

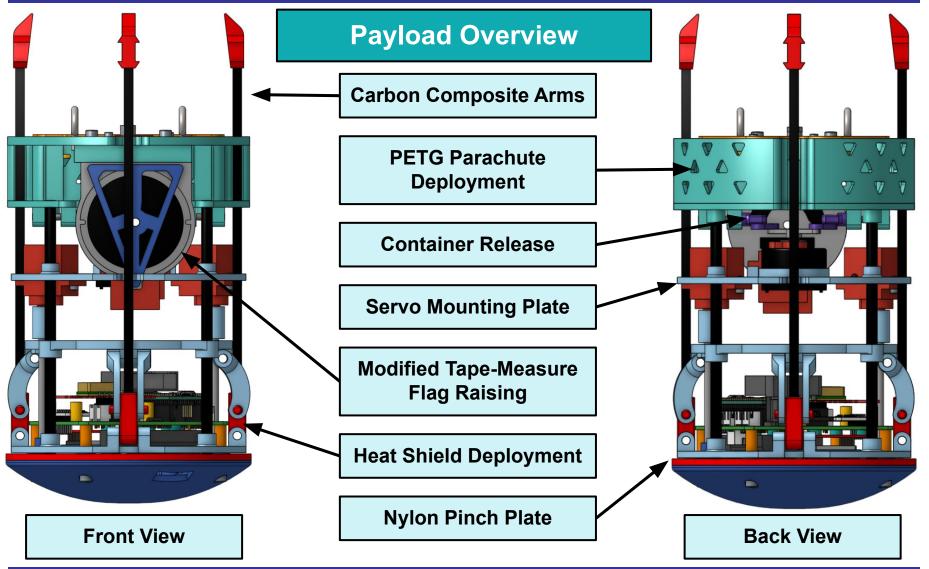
$$v = \sqrt{\frac{8(0.54kg)(9.81\frac{m}{s^2})}{\pi(0.55m)^2(1.3\frac{kg}{m^3})(1.5)}} \approx 4.78\frac{m}{s}$$

- **m** = mass
- g = gravitational acceleration = 9.81 m/s²
- **D** = parachute diameter
- ρ = air density = 1.3 kg/m³
- C_D = coefficient of drag (estimated)
- **v** = velocity

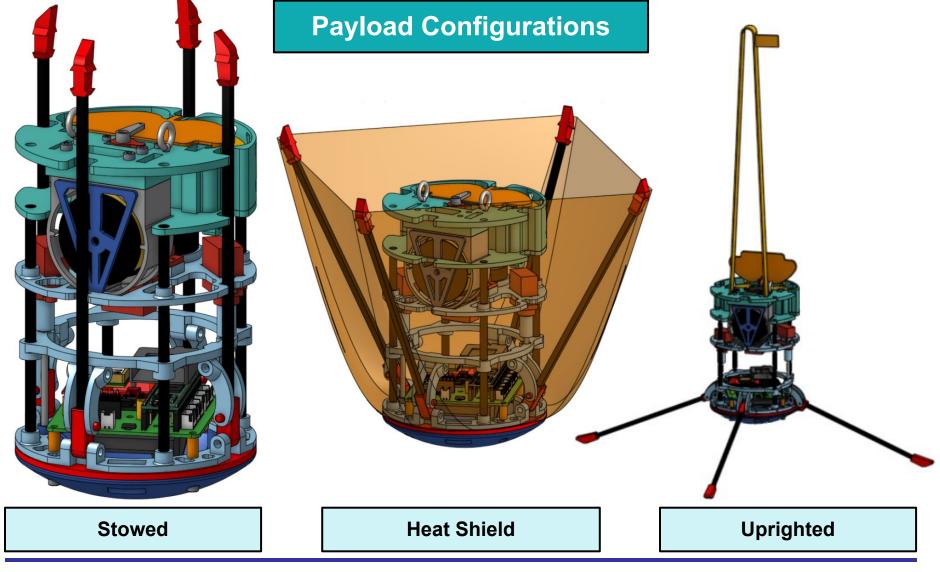

Mechanical Subsystem Design

Elena Dishman, Kyle Hughes and Cole Lenhart

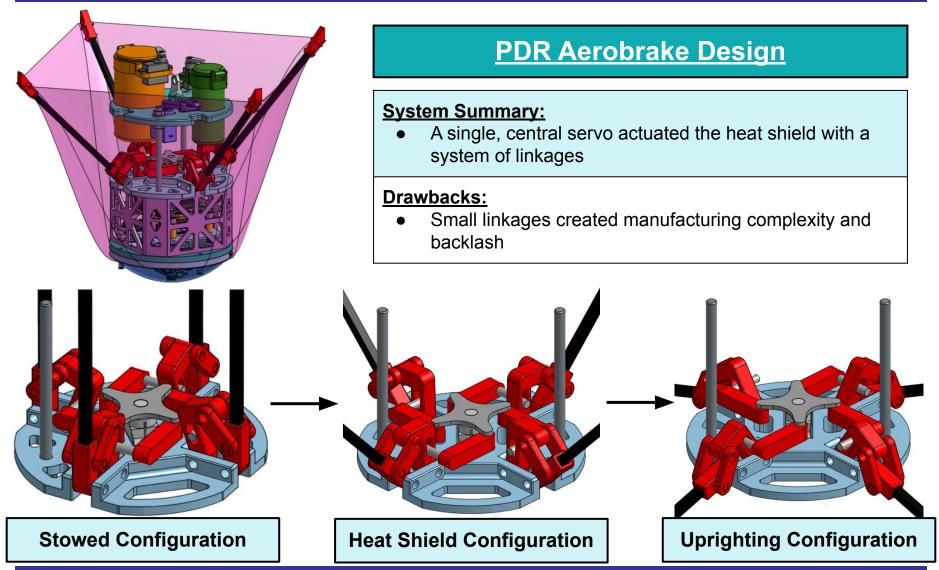
Mechanical Subsystem Overview (1 of 3)



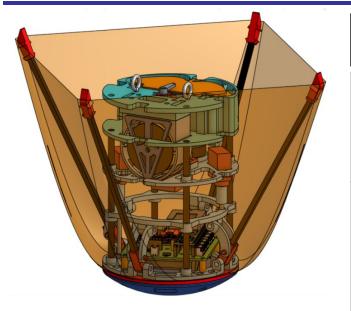
Mechanical Subsystem Overview (2 of 3)



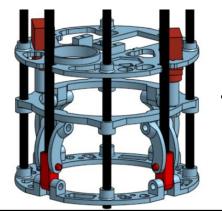
Mechanical Subsystem Overview (3 of 3)



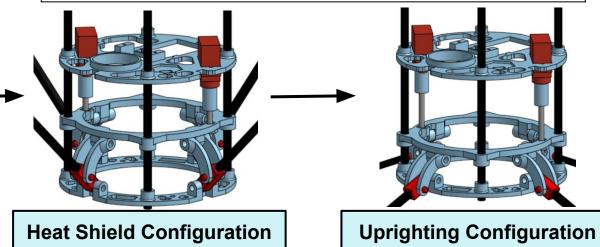
Mechanical Subsystem Changes Since PDR (1 of 7)



Mechanical Subsystem Changes Since PDR (2 of 7)


CDR Aerobrake Design

Changes:

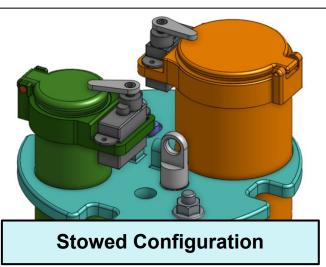

- Dual servo system with sliding plate attached to cylindrical threaded rods
- Low arm connection point

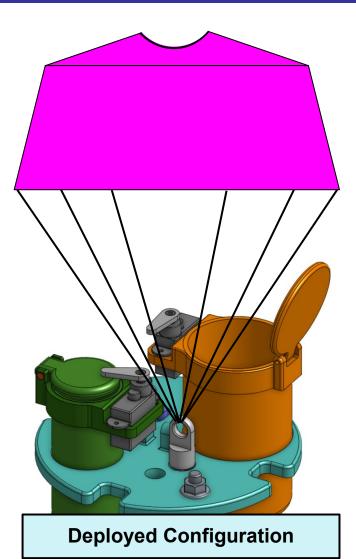
Rationale:

- Decreased complexity
- Increased mechanical advantage for heat shield deployment and uprighting
- Low center of gravity

Stowed Configuration

Mechanical Subsystem Changes Since PDR (3 of 7)



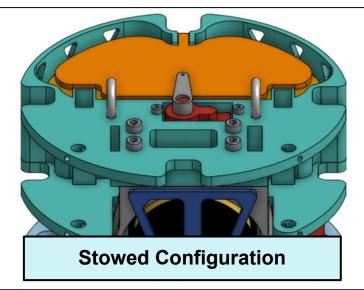

PDR Parachute Container Design System Summary:

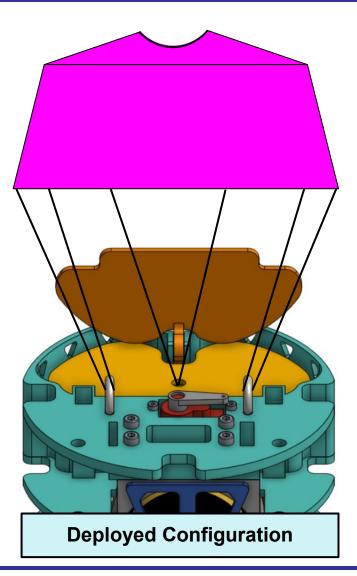
- Paracord attached to one M5 nut
- Cardboard tube used as parachute storage and mounted to top plate
- Utilizes servo-actuated spring-loaded piston deployment

Drawbacks:

- Small area of deployment
- Compact volume for storage

Mechanical Subsystem Changes Since PDR (4 of 7)

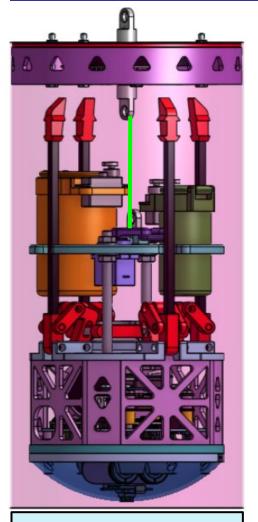

CDR Parachute Container Design


Changes:

- Parachute container is integrated into the top plate
- Paracord is attached to 3 steel screw eye hooks
- Increases area of deployment by 2,586 mm²
- Increase storage volume by 31,020 mm³

Rationale:

- Increased reliability for deployment
- Decreases deployment time



Mechanical Subsystem Changes Since PDR (5 of 7)

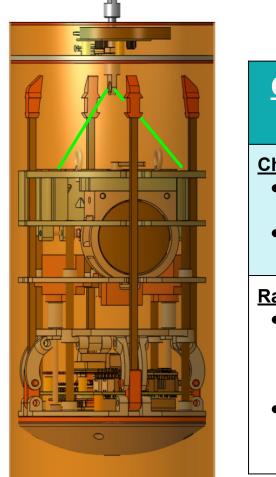
Stowed Configuration

PDR Container Release Design

System Summary:

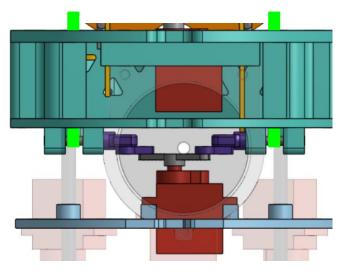
- One-pin system located on the top plate
- 2 mm paracord passes through top plate

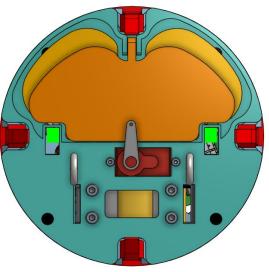
Drawbacks:


- Single point of attachment between container and probe
- Possibility of twisting during flight

Mechanical Subsystem Changes Since PDR (6 of 7)

Stowed Configuration

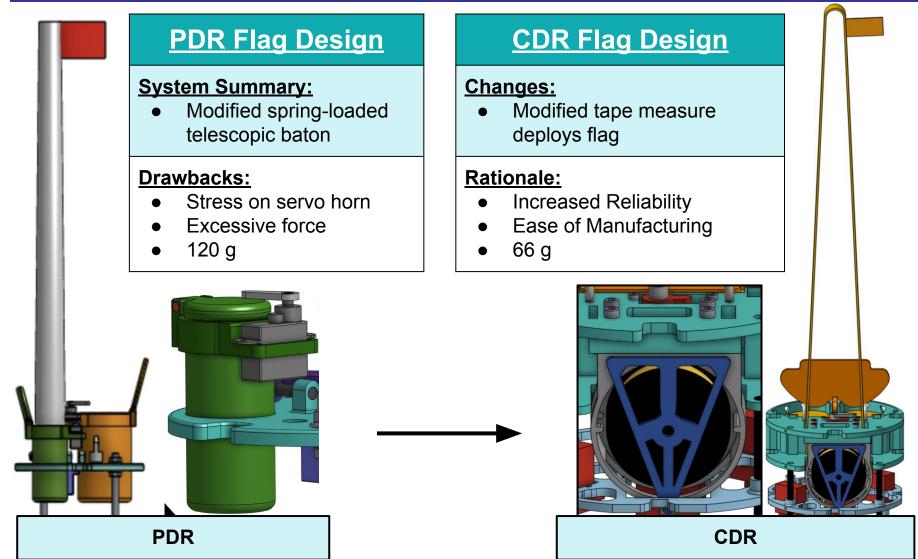

<u>CDR Container Release</u> <u>Design</u>


Changes:

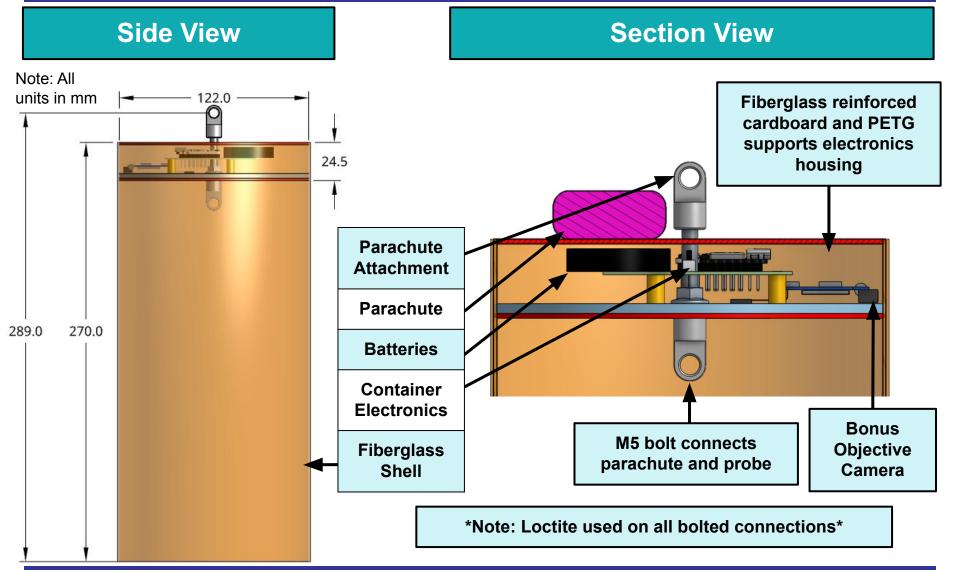
- Two-pin system located under the top plate
- 2 mm paracord passes through top plate

Rationale:

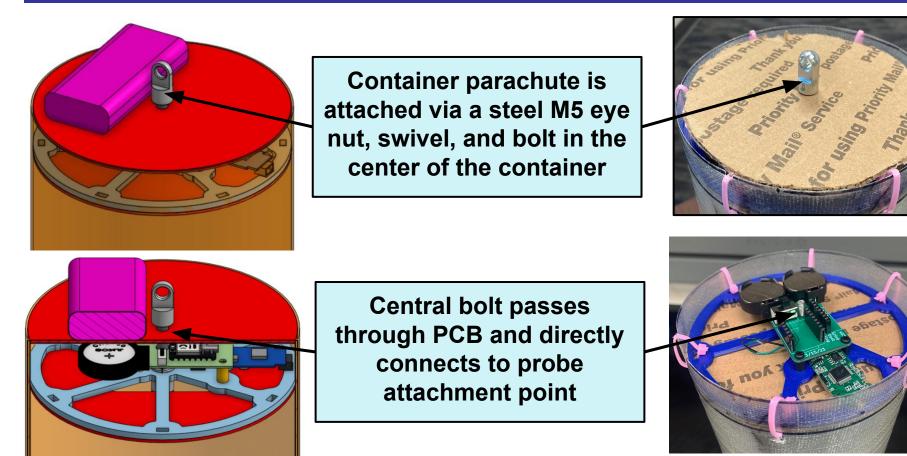
- Due to increased parachute container size, the release mechanism no longer fits on the top plate
- Provides attachment for the paracord in two places versus just one



Mechanical Subsystem Changes Since PDR (7 of 7)



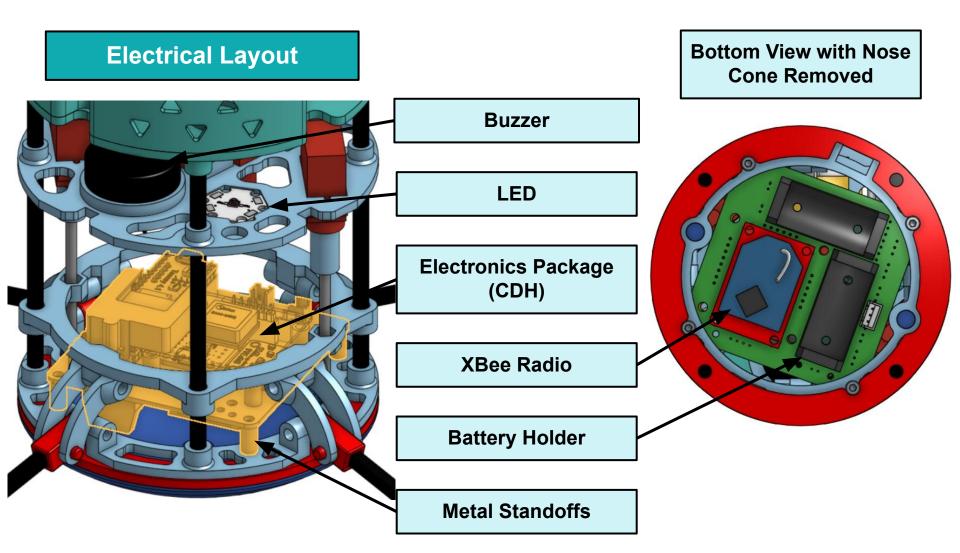
Container Mechanical Layout of Components



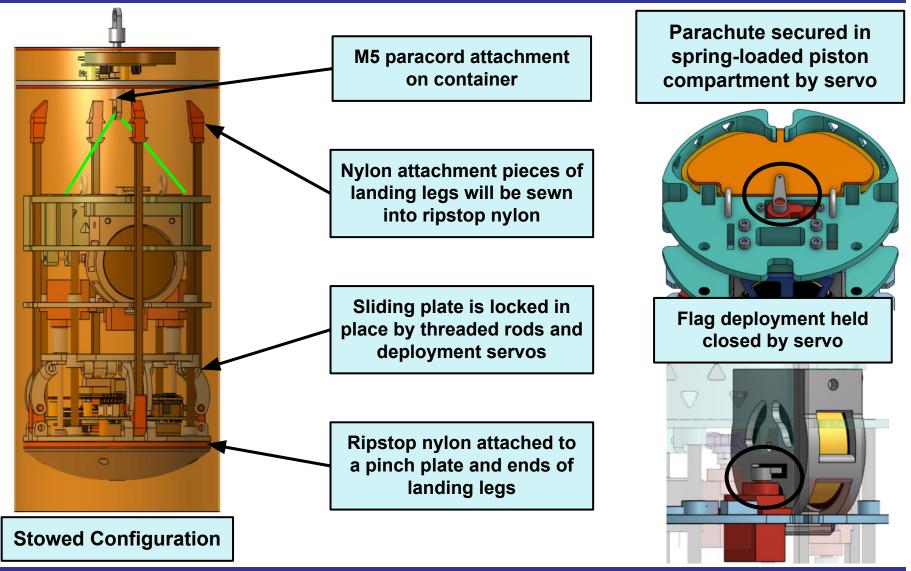
Container Parachute Attachment Mechanism

Note: The parachute will be folded in such a way that it can release passively after rocket separation

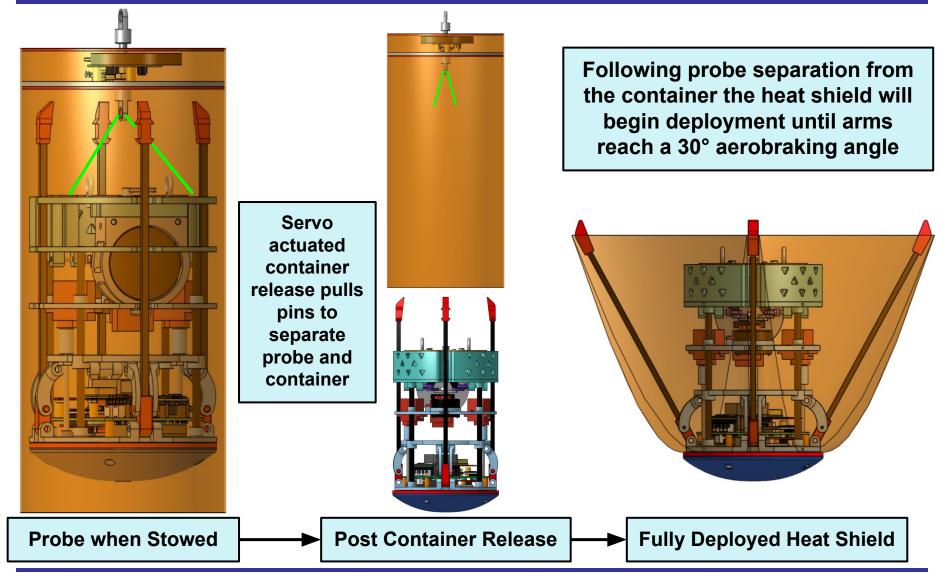
Payload Mechanical Layout of Components (1 of 2)



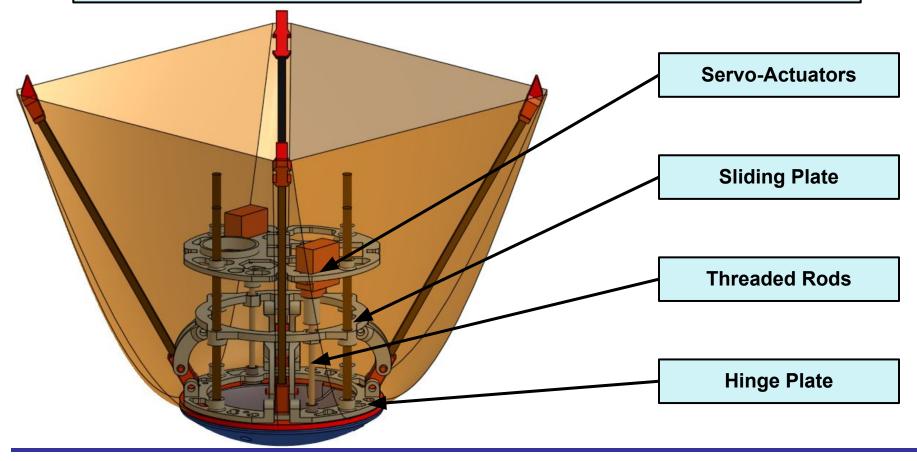
Payload Mechanical Layout of Components (2 of 2)

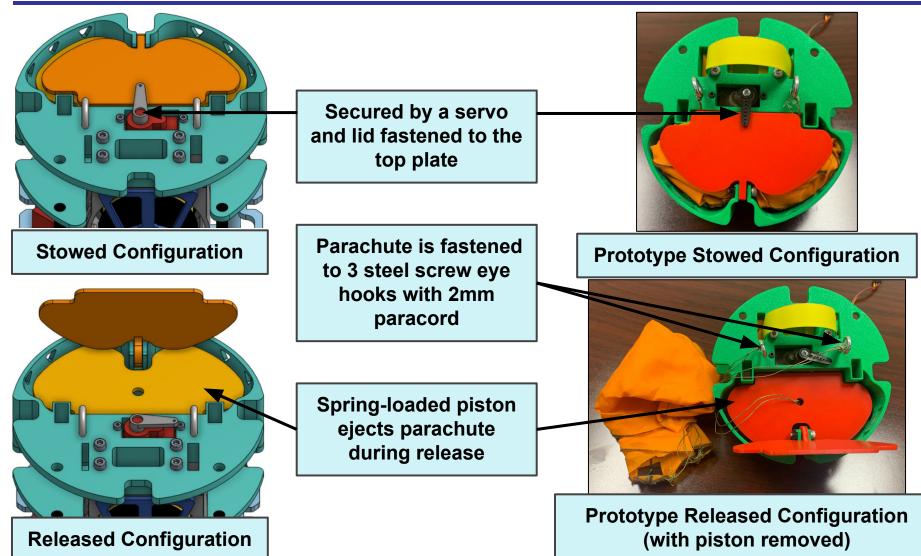


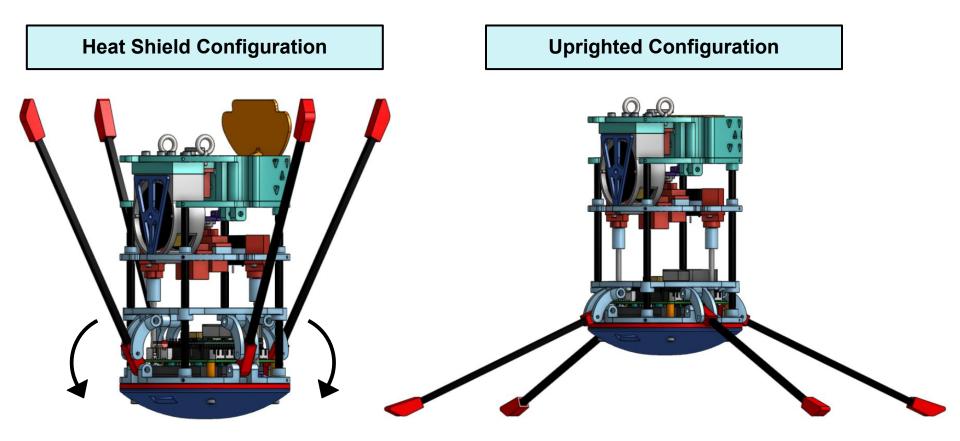
Payload Pre Deployment Configuration

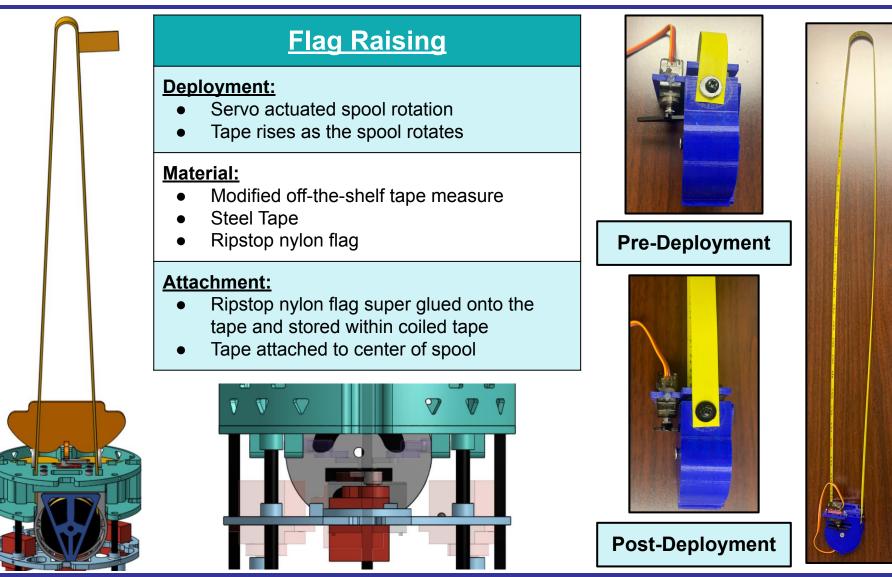


Payload Aerobraking Deployment Configuration (1 of 2)



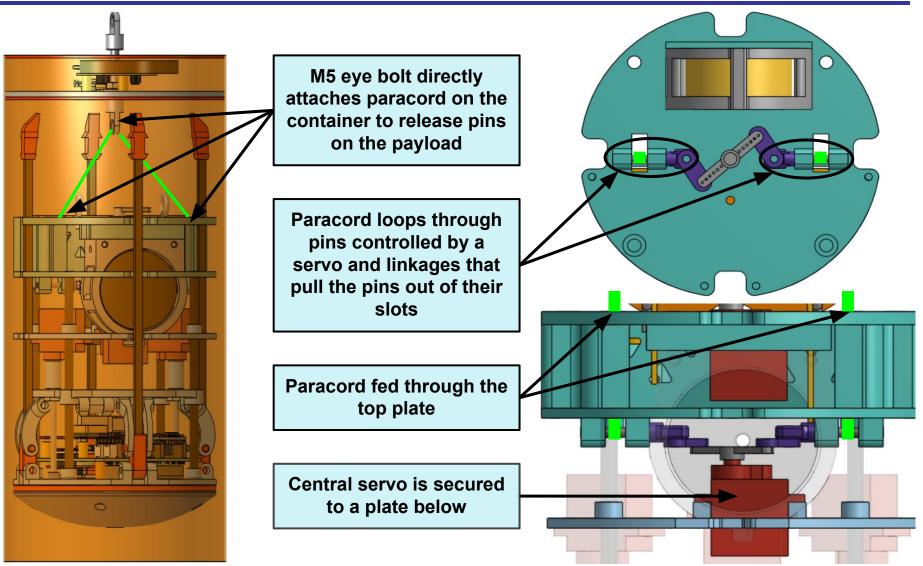

The heat shield arms will deploy when two servos rotate threaded rods. A PETG sliding plate will have two captive nuts that move the plate down, extending the arms out and pulling the nylon tight


Payload Parachute Deployment Configuration



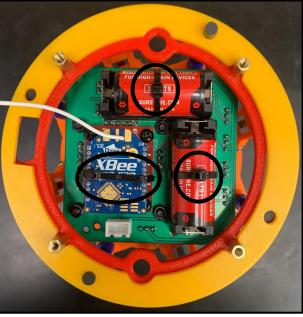
To upright, the 360° servos will continue rotating once the probe has landed. The carbon composite heat shield arms also serve as uprighting legs. The ends of the nylon attachment points are rounded to ease the uprighting process.

Payload Flag Deployment Configuration



Presenter: Cole Lenhart

Container Payload Mount

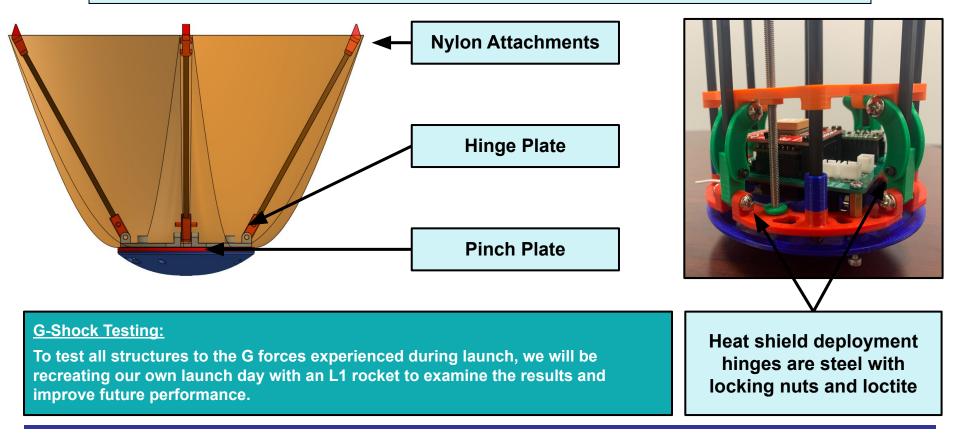


Structure Survivability (1 of 2)

Electronics:

- PCB and breakout boards attached with metal standoffs
- XBee module attached with a zip-tie
- Actuator, buzzer, and LED wires in cable bundles

Structural


- Mounting through four carbon composite rod
- Bolt hole into each plate through rod

Decent Control Attachment:

- Ripstop nylon sandwiched between deployment system hinge and pinch plates that are held together with superglue and fasteners
- Ripstop nylon on each deployable arm is sewed into 3D printed nylon attachment piece which is press fit and super glued onto each carbon fiber arm

		Cor	ntainer (1 of 2)		
Component	Quantity	Mass (g)	Mass Summary (g)	Uncertainty (g)	Source
Seeed RP 2040	1	2.0	2.0	-	Datasheet
Adafruit Spycamera	1	2.8	2.8	-	Datasheet
BMP388	1	1.0	1.0	± 0.5	Measured
P-Channel MOSFET	1	1.0	1.0	± 0.5	Measured
CR2450 Battery	2	6.2	12.4	-	Datasheet
Switch	1	2.0	2.0	± 0.5	Measured
Small PCB	1	6.0	6.0	± 0.5	Measured
Battery Holders	2	2.0	4.0	± 0.5	Measured
(Wires, Solder, Misc.)	1	10.0	10.0	_	Estimate
Electrical Total	-	-	41.2		-

		Cor	ntainer (2 of 2)		
Component	Quantity	Mass (g)	Mass Summary (g)	Uncertainty (g)	Source
Fiberglass Shell	1	60.0	60.0	± 0.5	Measured
Nylon Parachute	1	14.0	14.0	± 0.5	Measured
Zip Ties	6	0.17	1.0	± 0.5	Measured
Container Plate	1	10.0	10.0	± 0.5	Measured
M5 Bolt	1	6.0	6.0	± 0.5	Measured
Cardboard Plate	1	4.0	4.0	± 0.5	Measured
M5 Eye Nuts	2	6.0	12.0	± 0.5	Measured
Mechanical Total	-	-	107.0	-	-
Electrical Total	-	-	41.2	-	-
Container Total	-	-	148.2	-	-

		P	robe (1 of 5)		
Component	Quantity	Mass (g)	Mass Summary (g)	Uncertainty (g)	Source
Teensy 4.1	1	6.0	6.0	± 0.5	Measured
Adafruit Spycamera	1	2.8	2.8	-	Datasheet
BMP388	1	1.0	1.0	± 0.5	Measured
SAM-M8Q (GPS)	1	12.0	12.0	± 0.5	Measured
BNO055 (IMU/Tilt Sensor)	1	1.0	1.0	± 0.5	Measured
XBee Pro 900 HP	1	6.0	6.0	_	Datasheet
XBee Explorer Breakout Board	1	3.0	3.0	± 0.5	Measured
Linear 5.0V Regulator	1	1.0	1.0	± 0.5	Measured
LED	1	1.0	1.0	_	Datasheet
Buzzer Piezo 3V 30MM	1	8.0	8.0	_	Datasheet
Slide Total	-	-	41.8		-

		P	robe (2 of 5)		
Component	Quantity	Mass (g)	Mass Summary (g)	Uncertainty (g)	Source
Previous Slide Total	-	-	41.8	-	-
Switch	1	2.0	2.0	± 0.5	Measured
CR2032	1	3.0	3.0	-	Datasheet
P-Channel MOSFET	2	1.0	2.0	± 0.5	Measured
CR123A Battery	2	16.0	32.0	-	Datasheet
Battery Holder	2	3.0	6.0	± 0.5	Measured
РСВ	1	18.0	18.0	± 0.5	Measured
360 MG90 Servo	2	12.0	24.0	± 0.5	Measured
180 SG90 Servo	3	12.0	36.0	± 0.5	Measured
(Wires, Capacitors, Resistors, Solder)	-	25.0	25.0	_	Estimate
Electrical Total	-	-	189.8		-

		Probe (3 of 5)				
Component	Quantity	Mass (g)	Mass Summary (g)	Uncer	tainty (g)	Source
Carbon Fiber Arms	4	2.0	8.0	±	- 0.5	Measured
Carbon Fiber Support Rods	4	4.0	16.0	±	- 0.5	Measured
Nylon Parachute	1	14.0	14.0	±	± 0.5	Measured
Nylon Heat Shield	1	10.0	10.0	±	± 0.5	Measured
Nylon Attachment Points	4	1.0	4.0	±	± 0.5	Measured
Nose Cone	1	34.0	34.0	±	± 0.5	Measured
Pinch Plate	1	9.0	9.0	±	± 0.5	Measured
Slider Plate	1	12.0	12.0	±	± 0.5	Measured
Hinge Plate	1	13.0	13.0	±	± 0.5	Measured
Servo Plate	1	15.0	15.0	±	: 0.5	Measured
Threaded Rods	2	6.0	12.0	±	: 0.5	Measured
Slide Total	-	-	147.0		-	-

		Pr	obe (4 of 5)			
Component	Quantity	Mass (g)	Mass Summary (g)	Unce	rtainty (g)	Source
Previous Slide Total	-	-	147.0		-	-
Rod Shoes	2	0.3	0.7		± 0.5	Measured
360 Servo Attachment	2	1.0	2.0		± 0.5	Measured
Arm Deployment Linkages	4	3.0	12.0		± 0.5	Measured
Chicago Screws	8	2.0	16.0		± 0.5	Measured
Parachute Deployment Plate	1	38.0	38.0		± 0.5	Measured
Parachute Eye Nuts	3	1.0	3.0		± 0.5	Measured
Parachute Spring Plate	1	8.0	8.0		± 0.5	Measured
Parachute Springs	2	1.0	2.0		± 0.5	Measured
Parachute Container Lid	1	6.0	6.0		± 0.5	Measured
Parachute Plate Base	1	21.0	21.0		± 0.5	Measured
Flag Raising Mechanism	1	52.0	52.0		± 0.5	Measured
Slide Total	-	-	307.7		-	-

		Pr	obe (5 of 5)		
Component	Quantity	Mass (g)	Mass Summary (g)	Uncertainty (g)	Source
Previous Slide Total	-	-	307.7	-	-
PCB Standoffs	4	3.0	12.0	± 0.5	Measured
General Fasteners/Adhesive	1	20.0	20.0	-	Estimated
Mechanical Total	-	-	339.7	-	-
Electrical Total	-	-	189.8	-	-
Probe Total	-	-	529.5	-	-

CanSat Mass Total	677.7 ± 23.5 g
Probe Mass Total	529.5 ± 17.5 g
Container Mass Total	148.2 ± 6.0 g

677.7 g - 700.00 g = -22.3 g Below Ideal Mass of 700 g Outside Mass limit of 690 g - 710 g

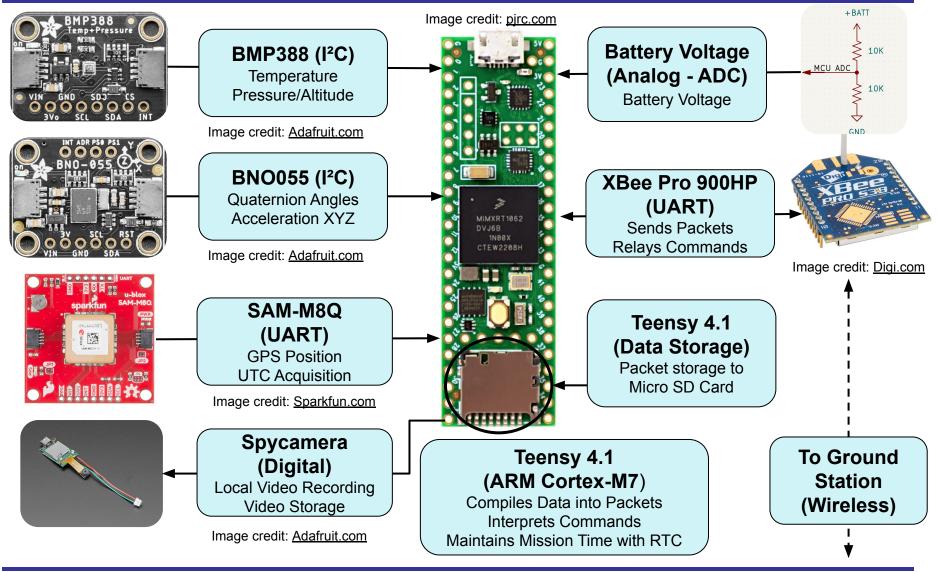
Methods to increase CanSat mass:

- Increase infill on 3D printed parts to increase structural integrity
- Put ballast in the nose cone to lower center of mass

Methods to decrease CanSat mass:

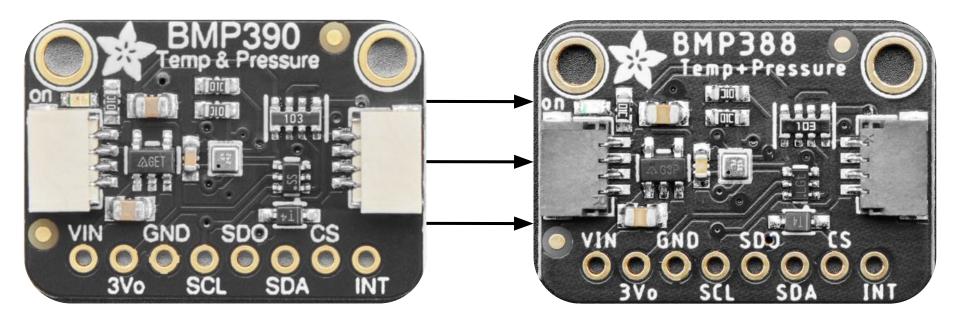
 Remove extra material on top plate and parachute container

Note: The scale used for measurements reads to the gram. Our uncertainty is the standard half of the smallest increment.


Communication and Data Handling (CDH) Subsystem Design

Brennan Begley and Emann Rivero

CDH Overview



Data Collected	PDR Sensor	CDR Sensor	Reason for Change
Pressure	BMP390	BMP388	BMP390 was not available for purchase
Temperature	BMP390	BMP388	BMP390 was not available for purchase

Payload Processor & Memory Selection

Module	Boot Time (ms)	Processor Speed (MHz)	Data Bus Width (bits)	Data Interfaces	Power Consumption (mA)
Teensy 4.1 (ARM Cortex-M7)	5	600	32	8 UART 3 SPI 3 I2C	100

RAM (KB)	Voltage (V)	Ports	Mass (g)	Price (\$)
1024	5.0	55 digital input/output 35 PWM outputs 18 analog inputs	6.0	31.50

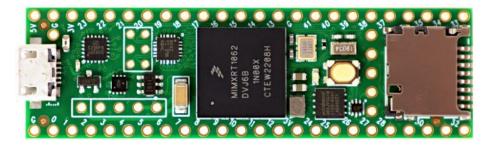


Image credit: www.pjrc.com


Teesy 4.1

- 5 ms start-up time
- Many useable ports
- Integrated SD card reader/writer
- 600 MHz processing speed

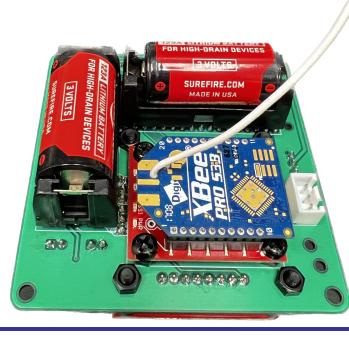
Module	Time Accuracy (ns)	Battery	Reset Tolerance	Lifetime (hours)
Teensy 4.1	± 1.2	CR2032	Oscillator runs independently of MCU power	24

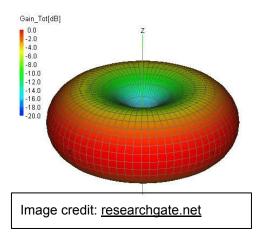
Teensy 4.1

- Integrated with Teensy module
- ± 1.2 ns accuracy
- Use with any 3.3V cell
- Long lifetime

Image credit: www.pjrc.com Image credit: adafruit.com

External CR2032 coin cell battery




Payload Antenna Selection

Module	Range (km)	Gain (dBi)	Pattern	Mass (g)
Integrated Wire Antenna	3.2	1.9	Omnidirectional	<1

60 mm long antenna

Integrated Wire Antenna

- 3.2 km range
- Included with XBee
- Negligible mass

XBee Radio Selection : XBee-Pro 900HP

NETID: 1079

Transmission Method: Unicast

Transmission Protocol: XBees will initialize and boot sensors, waiting for CX_ON Command. Once said command is sent, Probe XBee will transmit telemetry at a rate of 1 Hz to Ground XBee regardless of selected flight mode (simulation or flight). On landing, Probe XBee will cease transmission after receiving CX_OFF.

Image credit: digi.com

Configuration						
XBee	Mode	Dest. High	Dest. Low			
Probe	API 2	Ground Serial High	Ground Serial Low			
Ground	API 2	Probe Serial High	Probe Serial Low			

Power					
Transmit Power	Transmit Frequency				
250mW	900MHz				

Competition Given Telemetry Format

Example Telemetry Packet

"1079, 01:23:45, 560, S, DESCENT, 30.52, P, C, N, 24.45, 101.3, 5.4, 12:34:55, 329.52, 20.0035, 2.1940, 400, 12.39, 39.12, CMD,1079,SIM,ENABLE"

Note: Spaces added for legibility of telemetry packet; Payload sends packets at a rate of 1 Hz

Example CX_ON Command

"CMD,1079,CX,ON"

Payload Telemetry Format (2 of 3)

Data Field	Description	Units
<team_id></team_id>	Four-digit identification number	N/A
<mission_time></mission_time>	UTC time since mission start with resolution of 1 seconds	hh:mm:ss
<packet_count></packet_count>	Number of packets since mission start	N/A
<mode></mode>	Container and GS mode (flight or simulation)	N/A
<state></state>	Operating state of software i.e 'Launch'	N/A
<altitude></altitude>	Height above launch site with resolution of 0.1 meters	m
<hs_deployed></hs_deployed>	'P' indicates deployed heat shield, else 'N'	N/A
<pc_deployed></pc_deployed>	'C' indicates probe parachute deploy, else 'N'	N/A
<mast_raised></mast_raised>	'M' indicates flag mast has raised, else 'N'	N/A
<temperature></temperature>	Temperature of CanSat with resolution of 0.1 degrees	°C
<pressure></pressure>	Pressure measured from the Probe with resolution of 0.1 kPa	kPa
<voltage></voltage>	Voltage of CanSat power bus with resolution of 0.1 volts	V

Payload Telemetry Format (3 of 3)

Data Field	Description	Units
<tilt_x></tilt_x>	Angle of CanSat X axis with resolution of 0.01 degrees, where Z points towards center of earth	o
<tilt_y></tilt_y>	Angle of CanSat Y axis with resolution of 0.01 degrees, where Z points towards center of earth	o
<accel_x></accel_x>	Acceleration of the CanSat towards the X axis with resolution 0.0001	m/s²
<accel_y></accel_y>	Acceleration of the CanSat towards the Y axis with resolution 0.0001	m/s²
<accel_z></accel_z>	Acceleration of the CanSat towards the Z axis with resolution 0.0001	m/s²
<gps_altitude></gps_altitude>	Altitude as calculated by the GPS with resolution of 0.1 meters	m
<gps_latitude></gps_latitude>	Latitude as calculated by GPS with resolution of 0.0001 degrees	°North/°South
<gps_longitude></gps_longitude>	Longitude as calculated by GPS with resolution of 0.0001 degrees	°East/°West
<cmd_echo></cmd_echo>	Text of last command received and processed	N/A

Payload Command Formats

Command Declaration	Team ID	Command Name	Option Description Example		Command Description
CMD	1079	СХ	ON	"CMD,1079,CX,ON"	Activates receiving telemetry
CMD	1079		OFF	"CMD.1079,CX,OFF"	Deactivates receiving telemetry
			UTC	"CMD,1079,ST,UTC"	Sets time on the probe to UTC time
CMD	1079	ST	GPS	"CMD,1079,ST,GPS"	Sets time on the probe to UTC time given by GPS
		1079 SIM	ENABLE	"CMD,1079,SIM,ENABLE"	Enters Simulation Mode and prevents initiating Flight Mode
CMD	1079		ACTIVATE	"CMD,1079,SIM,ACTIVATE"	Activates Simulation Mode
			DISABLE	"CMD,1079,SIM,DISABLE"	Disables Simulation Mode
CMD	1079	SIMP	Custom	"CMD,1079,SIMP,XYZ"	Sends an input pressure to the probe
CMD	1079	CAL	N/A	"CMD,1079,CAL"	Resets all saved values on the probe to zero

Electrical Power Subsystem Design

Mason Mills

EPS Overview

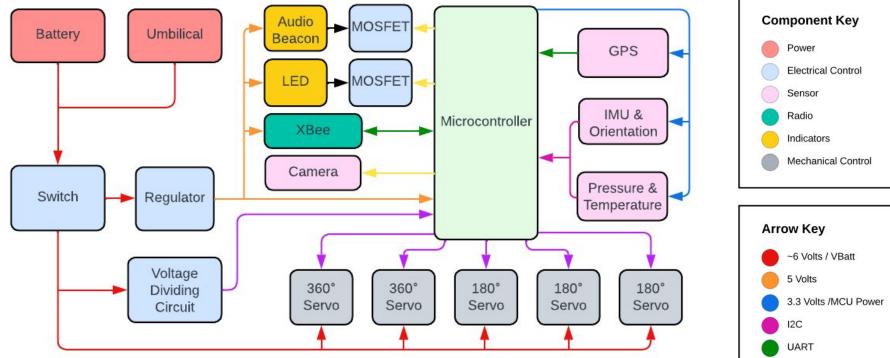
<u>Umbilical:</u> Disconnecting plug from the batteries that can be used with an external power source	Battery: Two CR123A SureFire batteries, each 3V, outputting a combined ~6V	Umbilical Battery Diode
Diode: Prevents the reverse flow of electricity	Switch: Gate that turns on and off the electrical system	Switch
Regulator: Reduce voltage from batteries to 5.0V providing required voltage to components	MOSFET: Programmable switch used to control the supply of power to specific components	MCU Power Regulator Sensors MOSFET Camera
MCU Power:		

Internal regulator of MCU reduces 5.0V input to 3.3V output that powers each sensor

Audio

Beacon

LED



Powered Components	PDR	CDR	Reason for Change
Pressure Sensor	BMP390	BMP388	Availability issues with the BMP390
Temperature Sensor	BMP390	BMP388	Availability issues with the BMP390
Heat Shield Motors	1 Analog Feedback Servo	2 MG90 360° Servos	Revised heat shield deployment mechanism requires two 360° servos

Payload Electrical Block Diagram

- Switch located in the nose cone, easily accessible from the shell located at the bottom of the CanSat
- To read voltage, power will pass through a VDC which will then • be read by the microcontroller and verified by the ground station

Battery	Voltage (V)	Capacity (mAh)	Quantity Needed	Layout	Power Density (Wh/g)	Instant Current (mA)	Unit Weight (g)	Unit Price (\$)
Surefire CR123A	3.0	1,550	2	Series	0.274	1,000	17	1.80

Image credit: surefire.com

<u>Note:</u> Batteries will be mounted in battery holders and secured with two heavy duty zip ties

Surefire CR123A

- High power density
- Reliable and predictable
- Well documented discharge traits

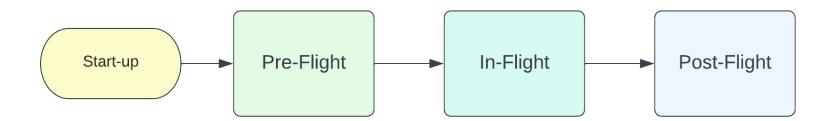
Payload Power Budget (1 of 2)

Component	Voltage (V)	Active Draw (mA)	Active Duration (h)	ldle Draw (mA)	Idle Duration (h)	Quantity	Energy (Wh)	Source
BMP388	3.3	1.00	2.00	0.002	0.00	1	0.007	Datasheet
SAM-M8Q	3.3	29.00	2.00	9.500	0.00	1	0.191	Datasheet
XBee	5.0	229.00	2.00	0.003	0.00	1	2.290	Datasheet
BNO055	3.3	12.30	2.00	0.330	0.00	1	0.081	Datasheet
PUI 3V Piezo Buzzer	5.0	22.00	0.50	0.000	1.50	1	0.055	Datasheet
LED	5.0	83.00	0.16	0.000	1.84	1	0.066	Datasheet
Adafruit Spycamera	5.0	110.00	2.00	80.000	0.00	1	1.100	Datasheet
Teensy 4.1	5.0	100.00	2.00	11.730	0.00	1	1.000	Datasheet
360 MG90 Servo	6.0	250.00	0.04	10.0	1.96	2	0.360	Datasheet
180 SG90 Servo	6.0	250.00	0.02	10.0	1.98	3	0.420	Datasheet

Energy Consumption Subtotal (Wh):	5.57
Power Supply Efficiency :	89.2%
Total Energy Consumption (Wh):	6.24
Available Battery Capacity (Wh):	9.30
Percent of Battery Used:	67.1%
Energy Margin (Wh):	3.06
Remaining Battery Percentage:	32.9%

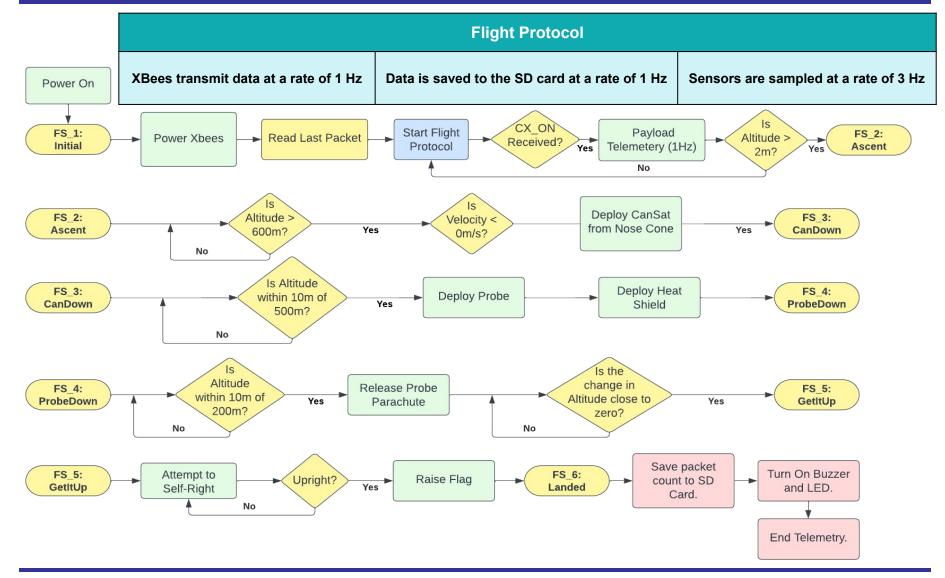
Note: The energy margin will account for any uncertainties in datasheet accuracy

Flight Software (FSW) Design

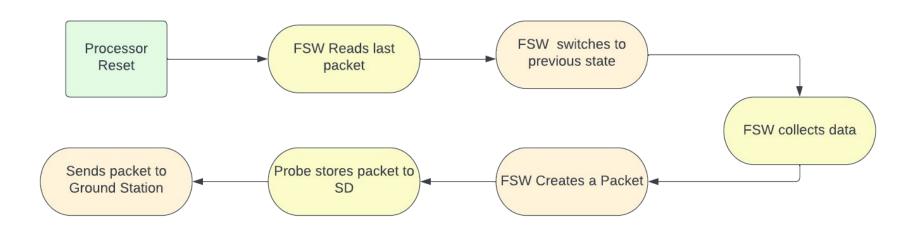

Emann Rivero

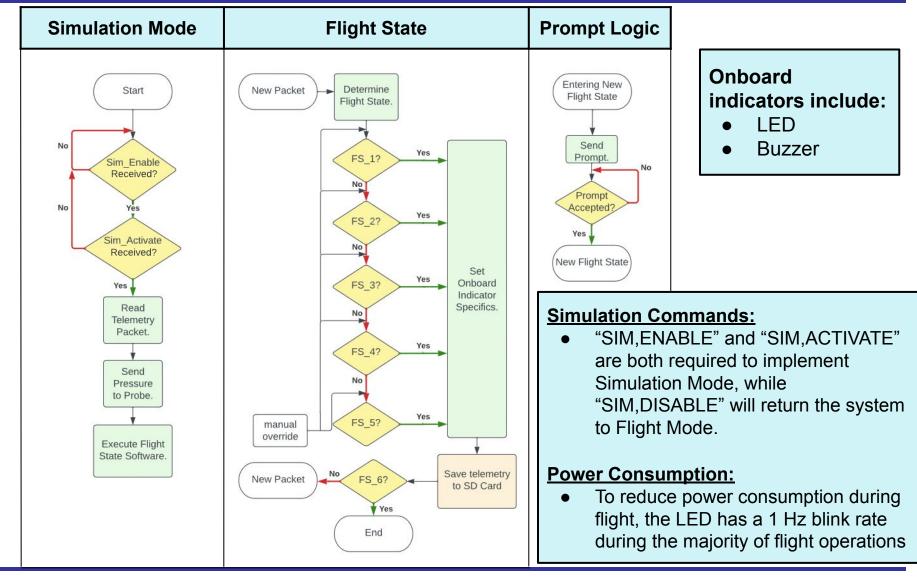
Pre-Flight:	<u>In-Flight:</u>	<u>Post-Flight:</u>
 Power all devices Boot all sensors Read previously saved packet Calibrate to zero and begin mission time 	 Determine flight state Record video from container and payload cameras Release descent mechanisms based on flight state Blink LED 	 Set buzzer on, blink LED, raise mast End recordings Save telemetry to SD card through processor resets

Note: Flight software is developed in the Arduino IDE using Arduino



Process	PDR	CDR	Purpose
Restructuring the Backend	Unified Functions	Modularized Functions	Simplifies the code's complexity and enhances readability
Command Detection	Nested if-statements	Switch case	Reduce complexity and increase code efficiency
Code Comment Revision	Comments for Software Development	Explanatory Sections to explain Software Development	Allows for easier testing and integration with electrical team




After Processor Restart:	Power Failure:
The payload will read the previous telemetry packet	Packet count and Flight
 Assign a flight state according to previous packet 	state will be stored to the
 Sensors restart data collection 	Teensy 4.1's internal
 FSW obtains sensor data and creates a packet 	EEPROM, to act as a
 The packet is then sent to the SD card 	backup in case of power
 Another copy is sent to the Ground Station for data 	failure during processor
processing and analysis	restart operations.
Processor resets occur on MCU power loss	

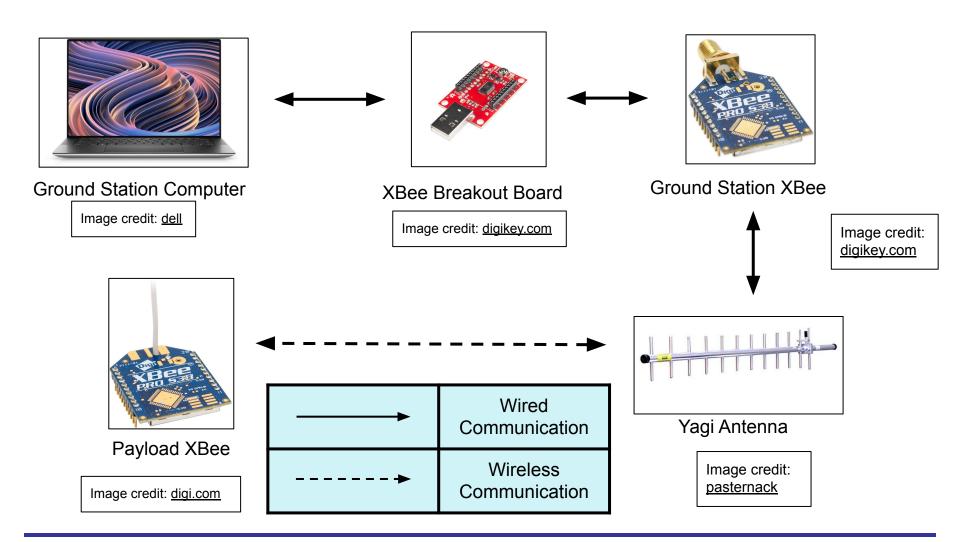
Simulation Mode Software

Software Development Plan

Name	Start Date	End Date	Octo	ober		Nove	mbe		Dece	ember	7	Ja	anuar	y		Febr	uary		Ma	rch		A	oril		May		
General			17			14	21		12														17			22	5
Team Formation	10/10/2022	10/30/2022																									
MCR Phase	10/24/2022	12/2/2022																									
PDR Phase	12/2/2022	1/27/2023																									
CDR Phase	1/27/2023	4/10/2023																									
Parts Ordering	2/6/2023	4/10/2023																									
Test-Launch Phase	4/14/2023	5/7/2023																									
Competition Phase	5/7/2023	6/11/2023																									
Software Team																											
State Machine	10/10/2022	11/16/2022																									
Ground Station Development	11/16/2022	1/19/2023																									
Prototyping	11/16/2022	1/19/2023																									
Radio Testing	1/20/2023	2/15/2023																									
Parts Order and Sensor Testing	1/20/2023	2/27/2023																									
Debugging	2/15/2023	6/10/2023																									

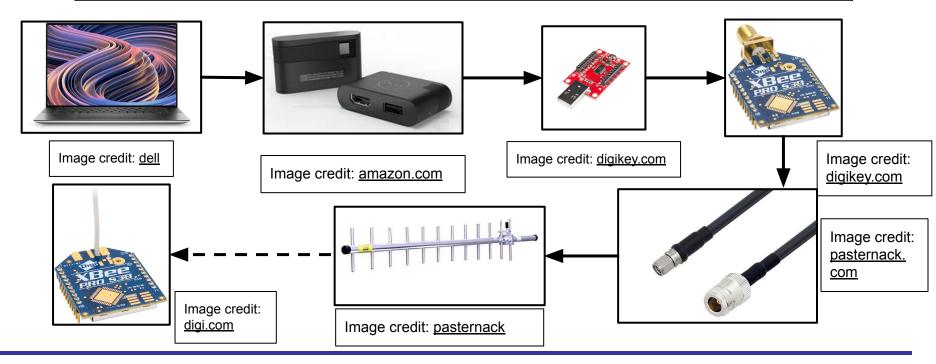
Software Development Progress (Enrico Addy and Emann Rivero)

- Sensor testing for each sensor has been completed but needs to be maintained throughout sensor integration.
- Sensor integration and simulation testing is still ongoing with electrical team


Ground Control System (GCS) Design

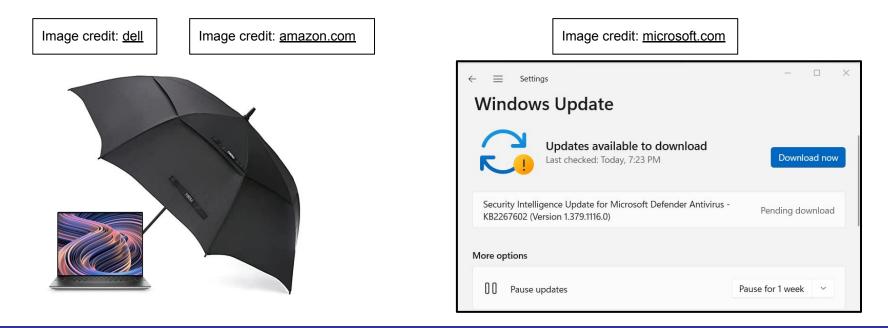
Enrico Addy

GCS Overview

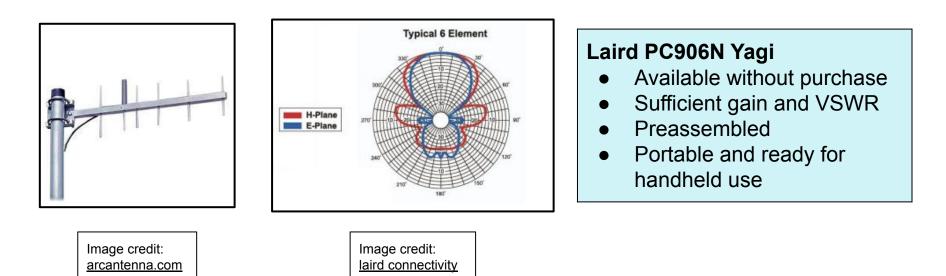

System	PDR	CDR	Rationale
Location Tracking	Probe location preserved in CSV file alone	Probe location tracking using Folium package	Recording probe path both in and out of flight is important in post-flight analysis
Ground Station Tab Layout	Incoming data expressed in one component of tab display	Dedicated tab for displaying incoming packets	Greater ease of full packet observation

GCS Communication Pathway

- The GS is hosted locally on a Dell XPS 15, from which telemetry is communicated through two USB adaptors to the Ground XBee
- The ground XBee communicates via the SMA Male to N Female connector to reach the handheld antenna, which relays telemetry to the Probe XBee

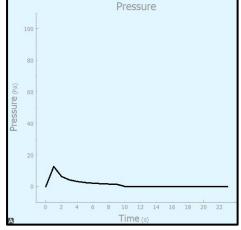


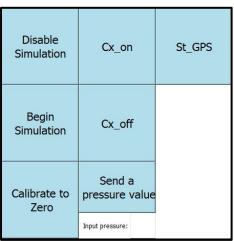
GCS Specifications


- The GS Computer will be set to pause updates for one month surrounding Flight Day, and the Windows update device will be stopped for the same period.
- As seen in the technical diagram, a laptop sunshade will be used to shield the GS computer from the sun.
- GS computer has a run time of 3 hours.
- A backup mobile power source will be available to extend run time

Model	Mount	Cable Loss (dBm)	Gain (dBi)	VSWR	Cost (\$)
Laird PC906N Yagi	Handheld	0.39	8.5	1.5:1	65.68

GCS Antenna (2 of 2)


Variables	Values	F	Free Space Loss Calculations	
P_{tx} - Power Transmitted G_{tx} - Transmitter Gain L_{tx} - Transmitter Loss L_{fsp} - Free Space Loss G_{rx} - Receiver Gain L_{ry} - Receiver Loss	$\begin{array}{l} G_{tx} = 10.65 \text{ dBm} \\ L_{tx} = 0.39 \text{ dBm} \\ L_{fsp} = 74.89 \text{ dBm} \\ G_{rx} = 4.05 \text{ dBm} \\ L_{rx} = 0 \text{ dBm} \end{array}$			
R _s - Receiver Sensitivity c - Speed of light	$R_{s} = -101 \text{ dBm}$ c = 3 x 10 ⁸ m/s		Receiver Power Calculations	
f - Operating frequency d - max expected distance	f = 900 mhz d = 800 m		$P_{rx} = P_{tx} + G_{tx} + G_{rx} - L_{tx} - L_{rx} - L_{fsp}$ $P_{rx} = 24 + 10.65 + 4.05 - 0.39 - 74.89$	
Link Budget Calculations	Link Range Calculations		P _{rx} ¹ = -36.58 dBm	
$P_{rx} = P_{Margin} - R_{s}$	$P_{\text{Margin}} = P_{\text{rx}} + R_{\text{s}}$		Antenna Calculations	
$P_{Margin} = P_{rx} + R_{s}$ $P_{Margin} = 22.163 \text{ dBm}$			Free Space Loss = 75 dBm	
With a margin of 22 Using an adapted ve			Receiver Power = -37 dBm	
dBm , our antenna is suitable for all flight operations.	the Friis equation, we reached a maximum range of 14.12 kilometers.		Link Budget = 22 dBm Range: 14 km	



Ground Station made in Python 3 with PyQt5, CSV, Folium, and Digi-XBee packages

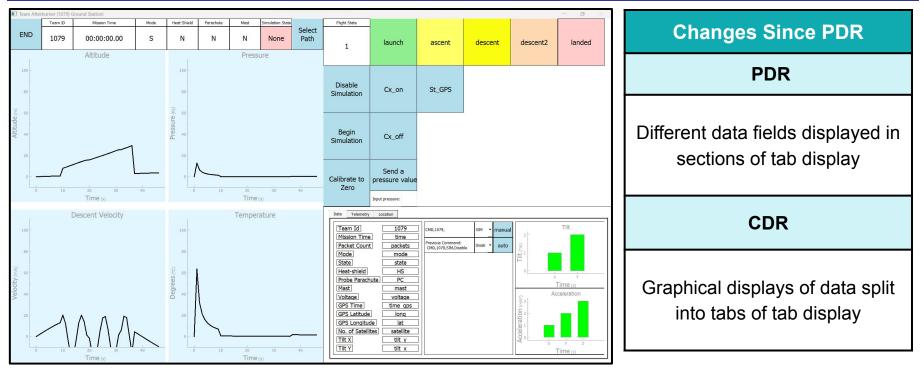
Command Software and Interface	 All mission requirement commands can be selected through two dropdowns with their names and acceptable options For quick access, important commands can be sent through a series of buttons Commands are sent to the serial port, transmitting via UART from ground XBee to CanSat XBee. Sensors will be calibrated prior to displaying telemetry. Sensors are considered calibrated when data shifts are less than 5% 				100 80 (°e) 40 20
Real-Time Plotting	 Using the PyQtGraph module of PyQt5, graph items will be updated as information is read from the CanSat XBee. 				
Simulation Mode	 When the SIM_ENABLE information read from C CanSat uses given infor returning sensor values 	Disable Simulation			
	CMD,1079,	cx -	manual		Begin Simulation
	Previous Command NULL	OFF -	auto		Calibrate to Zero

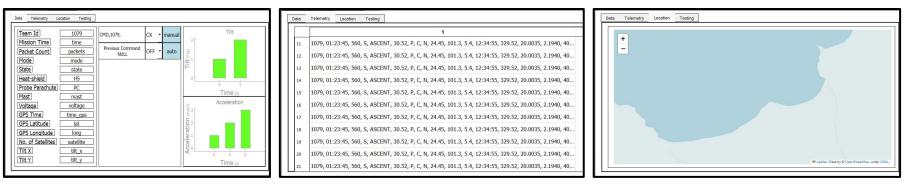
CSV File Creation

- After deciding to enter Simulation Mode a file dialog box will open, allowing selection of read-only CSV file.
- Information in this file is read to the Probe once per second, and return telemetry is saved to a Flight_1079.csv file.
- On GS termination another file dialog will open, copying above file to a new location as input.
- In Flight Mode, flight telemetry will be saved to our CSV file and GS termination behavior will occur as input.

Data Selection

Data Saving


$\rightarrow \land \uparrow$	Version ver	→ scratches ∨ C ○	Search scratches		Look in:	G O Ø 🖗 🎛
rganize - New fold	ler		≣ • [My Computer Name	Size Type Date Modified
A Home	Name	Date modified	Туре	Size	Flight_1079.csv	64es csv File 1/22/2:49 Pt
	Dight flight	10/16/2022 10:21 PM	Microsoft Excel Co	1	Test_Flight1.csv	0 bytes csv File 1/22/2:49 PM
	Flight_1079	1/21/2023 3:46 PM	Microsoft Excel Co	0	Test_Flight2.csv	21es csv File 1/22/2:50 Pt
					Test_Flight3.csv Test_Flight4.csv	39es csv File 1/22/2:51 Pl
Desktop 🖈	scratch_file	11/18/2022 1:05 PM	Microsoft Excel Co	1	Test_Flight4.csv	0 bytes csv File 1/22/2:52 Pt
🛓 Downloads 🖈 🖁	scratch_file2	11/17/2022 9:06 PM	Microsoft Excel Co	1		
Documents *	students	12/13/2022 6:43 PM	Microsoft Excel Co	1		
🔁 Pictures 🛛 🖈						
🕖 Music 🔹 🖈						
💟 Videos 🔹 🖈				-		
File na	me: scratch file2	~ D:	ata File (*.csv)	~	File name: Flight_1079.csv	Save


PC_	<u>F</u> ile <u>E</u> c	lit <u>V</u> iew <u>N</u> avi	🖪 Tea	mAfterburner - C:\Users
	ches 👌 👪	scratch_file2.cs	Scratche	s 👌 🏭 Flight_1079.csv
	🕹 main.p	y 🛛 📸 actua	🔡 Flight	
Pro			1	1,0.079
				2,0.158
		100		100,7.894
		111		111,8.763
		122		122,9.632
		134		134,10.579
		145		145,11.448
		157		157,12.396
		168		168,13.266
		179		179,14.135
		189		189,14.925
		198		198,15.636
		200		200,15.794
		210		210,16.585
		221		221,17.454
		231		231,18.245
		242		242,19.114
		252		252,19.905
		263		263,20.775
		274		274,21.645
		285		285,22.515
10	0	207	20	111 50 701

GCS Software (3 of 3)

CanSat Integration and Test

Cole Lenhart

Test	Testing plan
Subsystem Testing	Test each individual subsystem such as the Sensors, CDH, EPS, GCS, FSW, and mechanisms to identify and troubleshoot problems before integration
Integration Testing	Integrate systems, electro-mechanical and electro-software, test the fit and function of each, identify any issues and take necessary steps to resolve them
Environmental Testing	With a fully integrated CanSat, test the entire assembly according to the environmental testing standards defined by the mission guide
Simulation Testing	The CanSat is commanded to enter simulation mode, then sent simulated launch data from the ground station to demonstrate FSW, CDH, and mechanical capabilities
Test Launch	Demonstrate CanSat functionality through a mock flight day by conducting flight day activities including pre-flight preparations, flight, post flight recovery and data analysis/ submission. An L1 rocket compliant with the competition requirements will be built and utilized to verify the CanSat's compliance with the mission guide

Subsystem Level Testing Plan (1 of 2)

Subsystem	Components	Testing plan	Pass Requirement
Sensors	BMP388 BNO055 SAM-M8Q VDC Camera	 Test sensors individually Calibrate sensors Test sensor accuracy 	 Sensors calibrate correctly Accurate readings compared to data sheet
CDH	BNO055 BMP388 SAM-M8Q VDC Teensy 4.1	 Verify communication between sensors and microcontroller Verify data logging and mid-flight recovery 	 Communication between MCU and sensor suite MCU internally logs data
EPS	PCB Sensors MCU	 2 hour battery endurance test Test voltages for all sensors Test reverse polarity protection 	 System remains powered on after 2 hours Reverse voltage is significantly below operation voltage
Radio Comms.	MCU XBees Ground Station	 Verify long distance radio communication between XBees Test two-way communication 	 Packets sent between probe and ground station Probe receives commands from ground station

Subsystem Level Testing Plan (2 of 2)

Subsystem	Testing plan	Pass Requirement(s)
FSW	 Test transitions between simulation and flight states in code Test flight protocol for start-up and reset Test calibration with each sensor with commands Test time set code with GPS sensor 	 Flight states switch on time Sensors show calibrated values Probe RTC is set by GPS time in UTC The probe can restore its previous state after processor reset
Mechanical / Descent Control	 Verify parachute and heat shield mechanisms' functionality and reliability through drop tests Test probe release mechanism strength and reliability Test flag release mechanism functionality and reliability Verify CanSat structural integrity via environmental testing 	 Probe deploys while on battery power Parachute deploys when commanded by MCU Heat shield deploys when commanded by MCU Flag raised to 500mm after commanded by MCU Flag raised to 500mm after commanded by MCU The structure passes all environmental testing Descent rates meet mission requirements

Subsystem	Testing plan	Pass Requirement(s)
Descent	 Descent tests ensure parachute descent speeds are accurate to 1 m/s of desired speeds (weight will be added to simulate the mass of the electronics) Descent test to ensure heat shield falls at a speed of <20 m/s (weight will be added to simulate the mass of the electronics) Heat shield passive stabilization and CanSat center of mass tests CanSat descent will be tested before competition via test launch 	 Container releases probe at 500 m The descent speed of the probe is 5m/s ± 1 m/s with the parachute deployed The descent speed of the container and probe is 15m/s ± 5 m/s with the parachute deployed The descent speed of the probe is 20m/s ± 5 m/s with heat shield deployed The probe is aerodynamically stable with heat shield deployed Descent mechanisms including parachute function correctly and survive forces during test launch
Communication	 Test long distance radio communication between XBees Test communication under probe battery power Test two-way communication Test for optimal antenna position Test ground station GUI display CanSat communications will be tested before competition via test launch 	 Communication is stable at a range of 1000 meters The probe receives commands and sends packets Probe sends packets for a minimum of 2 hours under battery power Communications remain stable during test launch GUI displays received data correctly

Subsystem	Testing plan	Pass Requirement(s)
Mechanisms	 Test heat shield deployment mechanism Test self righting system Test flag deployment spring and servo Test servo and pin for probe release mechanism Test structural integrity of entire structure via environmental tests CanSat mechanisms will be tested before competition via test launch 	 Heat shield deploys to set positions and can maintain its aerobraking shape against wind Probe is able to upright itself The probe can successfully release from the container The CanSat withstands all forces applied to it during environmental tests Mechanisms survive the forces applied to them during the test launch
Deployment	 Test the parachutes to assure they won't become tangled on release Test tolerances between parachutes, container/probe, and rocket Test the tensile strength of parachute chords via environmental drop tests CanSat deployment at 500m will be tested before competition via test launch 	 The parachute deploys when the release servo is actuated The parachute cords and mounts are able to withstand the shock forces that they are exposed to during drop test and test launch

Subsystem	Testing plan	Pass Requirement(s)
Simulation	 Test simulation mode software with given competition datasets Ensure simulation mode commands are transmitted through two way communication Ensure simulation mode data is received by the ground station 	 Simulation test software communicates with ground station and initiates when commanded Simulation test software triggers flight states at accurate altitude readings

Test	Testing plan	Pass Requirement(s)
Drop test	 The goal of this test is to ensure that the CanSat can survive 30Gs of shock We will attach a 81 cm line to the parachute, and drop it to simulate the shock of the CanSat leaving the rocket body 	 The parachute cords and mounts are able to withstand the 30Gs of shock forces without breaking Batteries and electronics remain firmly attached to the CanSat body Good communication with the CanSat after the drop
Thermal test	 The goal the thermal test is to ensure that the entire CanSat can operate successfully in a 60 °C environment We will build a thermal chamber to contain the CanSat and place the functioning CanSat into the 60 °C chamber for a duration of two hours 	 No damage is observed CanSat remains powered Good communication with the Cansat

Test	Testing plan	Pass Requirement(s)
Vibration test	 The vibration test is to ensure that the structure and internals of the CanSat will survive the rattling of the rocket as it rises The CanSat will be attached to an orbital sander which will be cycled for five intervals of five seconds 	 CanSat remains structurally intact after being placed in the orbital sander Electrical components and batteries remain attached to the CanSat after being placed in the orbital sander
Fit Check	 The fit check is to ensure that the CanSat will fit in the rocket on flight day and deploy without issues Construct a rocket payload section and test tolerances between the payload wall and CanSat 	 CanSat fits comfortably in the rocket payload section CanSat deploys from the rocket payload section

Test	Testing plan	Pass Requirement(s)
Vacuum Test	 Test the flight software and the integrated CanSat while simulating the ascent and descent of the probe We will construct a vacuum chamber and then simulate the air pressure changing to ensure that all systems and flight software is working 	 The CanSat changes flight states as the pressure simulates different altitudes The cameras record the deployment and raising of the flag

	Subsystem Level Testing							
Subsystem	Test Proc	Test Description	Rqmts	Pass Fail Criteria	Status			
Sensors / CDH	1	Create a temporary circuit using a breadboard, power supply, and Teensy 4.1. Connect the BMP388 to the I2C communication line of the Teensy 4.1, and push example code with Arduino from the BMP3XX library to the Teensy 4.1. Confirm that the BMP388 has good communication with the Teensy and read the output data.	51, 56	Measures ambient temperature with resolution of 0.1 °C, pressure with a resolution of 0.1 kPa, and altitude with a resolution of 0.1 m	Pass			
	2	Create a temporary circuit using a breadboard, power supply, and Teensy 4.1. Connect the SAM-M8Q to the UART communication line of the Teensy 4.1, and push example code using the Sparkfun U-Block library. Confirm that the SAM-M8Q has good communication with the Teensy 4.1 and read the output data.	46, 51, 56	Measures time within 1 second of UTC, altitude to a resolution to 0.1 m, latitude and longitude with a resolution of 0.0001°, and reports the number of acquired satellites	Pass			
	3	Create a temporary circuit using a breadboard, power supply, and Teensy 4.1. Connect the VDC to the ADC pin of the Teensy 4.1, and push example code. Confirm that the VDC has good communication with the Teensy 4.1 and read the output data.	51, 56	Measures voltage accurately to a resolution of 0.1 volt	Pass			

	Subsystem Level Testing								
Subsystem	Test Proc	Test Description	Rqmts	Pass Fail Criteria	Status				
Sensors / CDH	4	Create a temporary circuit using a breadboard, power supply, and Teensy 4.1. Connect the BNO055 to the I2C communication line of the Teensy 4.1, and push example code using the Adafruit BNO055 library. Confirm that the BNO055 has good communication with the Teensy 4.1 and read the output data.	51, 56	Measures tilt in the X and Y axis accurately to a resolution of 0.1°	Pass				
	5	Create a temporary circuit using a breadboard, power supply, and Teensy 4.1. Connect the external coin cell battery to the RTC of the Teensy 4.1 and push code to set time. Disconnect power from the teensy for 30 minutes. Reconnect power and verify that correct time is kept.	45, 46	Time is maintained for 30 minutes after disconnecting main power with a time drift of < 1s	Ongoing				
	6	Create a temporary circuit using a breadboard, power supply, and Teensy 4.1. Connect all flight sensors to the the Teensy 4.1, and push FSW logging code. Confirm that all sensors have good communication with the Teensy 4.1 and read the .csv file that is logged.	56	FSW must write a CSV file with accurate data in the format required by the mission guide	Ongoing				
	7	Create a temporary circuit using a breadboard, power supply, and Teensy 4.1. Connect camera to the the Teensy 4.1, and trigger video recording. Wait 20 minutes, trigger camera to stop recording and collect SD card.	40,41,42	Records uncorrupted color video that is 680x480 resolution at 30 frames per second	Pass				

	Subsystem Level Testing							
Subsystem	Test Proc	Test Description	Rqmts	Pass Fail Criteria	Status			
	8	Solder diode and battery holders to PCB, install CR123A batteries backwards. Measure the positive terminal of the battery to ground and read voltage.	-	The voltage is less than 0.1 V	Pass			
EPS	9	Solder 5 volt linear regulator, and supporting capacitors to PCB and simulate battery voltage with a power supply. Apply simulated load to the 5V rail. Measure all 5V power outputs to ground and read voltage.	-	Power regulation circuit runs at 5 ± 0.1 V	Pass			
	10	Connect LED and Buzzer to the PCB and push blink code to the Teensy. Observe luminescence of LED and measure dB of Buzzer.	24, 25, 26	LED is viewable from outside of container and buzzer outputs a volume > 92 dB	Pass			
	11	Connect all electrical components and boot Teensy 4.1 with updated FSW. Install two fully charged CR123A batteries into the system. Turn on payload and establish connection with ground station. Monitor voltage level for two hours.	31	Entire electrical system functions with no power outages	Pass			
	12	Inspect electrical connections for structural rigidity by tugging connection cables with sufficient force. Inspect electronics used against mission guide requirements.	14, 16, 17, 27, 29	No banned materials used and electrical connectors are secure	Pass			

	Subsystem Level Testing							
Subsystem	Test Proc	Test Description	Rqmts	Pass Fail Criteria	Status			
Radio	13	Power on GS computer. Open XCTU application. Connect both XBees to computer. Inspect XBee radios for operating frequency, PANID, and transmission protocol through XCTU.	20, 21, 22	XBees are setup according to mission guide requirements	Pass			
	14	Power on payload, power on GS, send CX,ON command (XBee transmission begin). Walk 1 km away from the GS. While in line of sight, transmit telemetry at 1 Hz. Monitor incoming telemetry and flight state on GS. Use GS to send commands to payload and observe changes.	38, 39	The XBees remain connected with no packet loss. XBee on probe receives all sent commands	Ongoing			
FSW	15	Put the payload into Flight Mode for a period of two minutes, after which, turn the probe off and on again. Confirm that the FSW has returned to the correct packet count, flight state, mission time, and zero calibration value.	44, 45, 46, 53	Maintains packet count, flight state, mission time, and zero calibration post processor reset.	Ongoing			
	16	Power on the payload, and turn on the GS Computer. Use the computer to enter Flight Mode, and send a CX,ON command to the payload to begin telemetry. Confirm that telemetry is sent to the computer with specifications as directed in the Mission Guide.	38, 39, 46, 50, 52,	Calibrates telemetry to zero post CX,ON. Delivers packets with all telemetry fields as specified by the mission guide	Ongoing			

	Subsystem Level Testing							
Subsystem	Test Proc	Test Description	Rqmts	Pass Fail Criteria	Status			
FSW	17	Power on the payload and GS computer. Enter Simulation Mode using Simulation Enable and Activate commands, and begin sending simulation pressure commands as directed by provided simulation profile. Confirm that payload reads and acts according to given pressure values.	47, 48, 49	Payload reads simulation commands and enters Simulation Mode. Payload returns telemetry based off input pressure values.	Pass			
Mechanical	18	Assemble heat shield sub system on probe. Push and activate the simulation mode software. Once the simulation code reports an altitude of 500 m, verify the probe separates from the container and the aerobrake system begins actuation, then time how long it takes to reach the deployed configuration.	33	Aerobraking Heat shield opens within 10 seconds of container separation	Ongoing			
	19	Assemble heat shield sub system on probe. Integrate altimeter package into probe to measure descent rate and add counterweight to achieve fully integrated probe mass. Conduct a drop test with fully deployed heat shield. Verify heat shield descent is less than 20 m/s rate using altitude data from altimeter.	34	Probe heat shield slows probe descent rate to less than 20 m/s.	Ongoing			

	Subsystem Level Testing								
Subsystem	Test Proc	Test Description	Rqmts	Pass Fail Criteria	Status				
Mechanical	20	Use simulation mode to test the release mechanism when the CanSat reached 500 m.	35	The probe parachute reliably deploys once the simulation code displays 200 m and the servo rotates	Ongoing				
	21	Perform a drop test for probe parachute deployment and descent rate.	35	The parachute slows the probe descent to 5 m/s within the +/- 1 m/s margin	Ongoing				
	22	Once the simulation software detects the probe has landed, the self righting mechanism actuates to rotate the probe to the nadir direction relative to the ground within a 15° tolerance. This test will be performed on a variety of different surfaces from different landing orientations.	36	The probe faces the nadir direction relative the the ground within a 15°	Ongoing				
	23	Once the simulation software detects probe is upright, the flag will raise to a height of 500 mm from the base of the probe.	37	The flag reliability deploys to 500 mm measured from the base of the probe	Pass				

	Subsystem Level Testing						
Subsystem	Test Proc	Test Description	Rqmts	Pass Fail Criteria	Status		
Mechanical	24	The entirety of the probe is inspected to ensure compliance with color, banned mechanisms, and material requirements as specified in the mission guide.	9, 16, 17, 18, 23, 40	The external surface of the probe and parachute are fluorescent orange; mechanisms do not use pyrotechnics or chemicals; no heat mechanisms are used nor exposed; probe is labeled with team information; switch is accessible; camera on the probe is pointed down towards the ground	Pass		
	25	Electronic and mechanical component connections are inspected for the use of proper standoffs, screws, or high performance adhesives. Battery placement is inspected to ensure that battery installment takes less than one minute	14, 28	Mounts are fastened to their most secure and stable state; batteries can be installed in less than one minute	Pass		

	Integration Level Testing							
System	Test Proc	Test Description	Rqmts	Pass Fail Criteria	Status			
CanSat and Launch Vehicle Integration	26	Use simulation mode to perform flight objectives including heatshield deployment, parachute deployment, uprighting, and flag raising without rocket components in use.	6, 7	Cansat does not use any rocket components as a part of CanSat operations or restrain deployable components	Pass			
	27	Inspect external surface of the container and verify that there are no sharp edges or protrusions. Container and parachute color is fluorescent orange. Inspect for holes within the container besides small holes for switches and fully encloses probe.	3, 4, 5, 9	Container has no sharp edges or protrusions on its surface that can snag on rocket body. Container and parachute are fluorescent orange. Container is solid and fully encloses probe	Pass			
GCS	28	Power on the payload, and turn on the GS computer. Begin sending telemetry to the payload at 1 Hz through the CX,ON command. Calibrate the payload to zero upon placing it on a launch pad.	11, 50	Returned payload values at zero while the payload is on the launch pad, as directed by the GS.	Pass			
	29	Inspect GS for mission guide elements including laptop, XBee radio, and hand-held antenna. Power on laptop, and walk 50m while holding laptop.	58, 59	All mission guide elements are present and laptop continues operation despite movement.	Pass			

	Environmental Testing						
Test	Test Proc	Test Description	Rqmts	Pass Fail Criteria	Status		
Drop	30	Power the CanSat and GS on. Verify good telemetry between the CanSat and the GS. Hook the top of of the CanSat to a fixed point 1 meter above the ground with 1/8" kevlar cord. Raise the CanSat such that the connection point to the CanSat and the fixed point are at the same height, and drop the CanSat. Verify any changes to the state of the CanSat.	12, 13, 15, 30	Verify no power loss or damaged parts and telemetry packets are still being received	Ongoing		
Thermal	31	Place the CanSat, a hair dryer, and a thermometer in an insulated cooler. Power on the CanSat and seal the chamber. Power the heat source, pointing it away from the CanSat. Manage temperature by powering off the heat source when the thermometer reads 60°C and powering it on when the temperature subceeds 55°C. Continue this process for two hours then verify functionality and integrity of all subsystems while hot.	15, 30	Structural, mechanical, and electrical components function and have no visible deformation from thermal warping. All subsystems are able to perform their respective tasks while the CanSat is still hot.	Ongoing		
Vibration	32	Securely attach fully assembled Cansat to orbital sander. Power on CanSat and start collecting accelerometer data. Turn on orbital sander for five seconds and then turn if off and wait for it to stop. Repeat four more times. Inspect CanSat and verify accelerometer is still collecting data.	15, 30	Verify no power loss or damaged parts and that accelerometer telemetry was interrupted	Ongoing		

	Environmental Testing						
Test	Test Proc	Test Description	Rqmts	Pass Fail Criteria	Status		
Vacuum test	33	Suspend the CanSat in the vacuum chamber and turn CanSat on. Turn on the vacuum pump and then turn it off as peak altitude is reached. Monitor telemetry as the pressure slowly returns. Collect and save the telemetry for review.	15, 30	Telemetry and flight states reflect the simulated altitude and pressure changes	Ongoing		
Fit check	34	Measure fully assembled container dimensions including radius and height. Container height will be no greater than 390mm and container diameter will be no greater than 124mm. Integrate the probe and container. Weigh the full assembly using a scale. Verify the full list of components used and tabulate cost.	1, 2, 19	Cansat maximum dimensions will be no greater than 390 mm in height and 124 mm in diameter. The mass of the CanSat must be within 700 \pm 10 g. The CanSat is under \$1000	Pass		
Simulation Test	35	Power on the payload, and turn on the GS computer. Attempt sending Simulation Activate without a prior Enable. Afterwards, enter Simulation Mode through both Simulation Enable and Activate, then begin sending simulation profile commands to the probe at 1 Hz. Confirm received packets contain mission guide telemetry fields with resolution as specified by mission guide. Inspect GS for plots of telemetry and generated CSV files.	38, 39, 46, 54, 55, 57, 60, 61	Payload returns an error upon invalid entrance of Simulation Mode. In Simulation Mode, GCS sends and receives telemetry at 1 Hz with graphics and csv files.	Ongoing		

Test	Testing plan	Pass Requirement(s)
Simulation Test	 Test the function of the fully integrated probe under commands given by the competition command profile. We will integrate probe components and transmit profile commands at a rate of 1Hz to the probe to clarify that the probe acts identically under profile and real conditions. 	 The CanSat functions as if it received real pressure values, passing all flight states and implementing all mechanical actions as necessary. Onboard components of the probe act according to flight states, such as camera activation.

Mission Operations & Analysis

Brennan Begley

Team Roles and Responsibilities:

- Everyone on the team will be contributing to the events of launch day
- The Mission Operation Manual lays out the events that the team will follow

Team	Description	Personnel
Mission Control Officer	Responsible for informing flight coordinator when their team and CanSat is ready to be launched.	Louis McEvoy
Ground Station Team	Responsible for monitoring the ground station for telemetry reception and issuing commands to the CanSat.	Enrico Addy, Emann Rivero
Recovery Team	Responsible for tracking the CanSat and going out into the field for recovery and interacting with the field judges. This team is responsible for making sure all field scores are filled in.	Brennan Begley, Mason Mills
CanSat Team	Responsible for preparing the CanSat, integrating it into the rocket, and verifying its status.	Gabriel Campos, Quinn Casper, Elena Dishman, Kyle Hughes, Cole Lenhart

Overview of Mission Sequence of Events (2 of 3)

Event	Description and Objectives	Team
Arrival	Arrive at Launch Location with CanSat and Ground Station Hardware	All
↓	Assemble CanSat and Test Integrity of Mechanical Systems	CanSat
	Assemble Antenna and Ground Station	Ground Station
Pre-launcl	Power CanSat On	CanSat
	Validate Signal Acquisition and Calibrate/Test Electrical Systems	Ground Station
1	CanSat Integration into Rocket	CanSat
+	Initiate CanSat Launch	Mission Control Officer
Leureb	Validate Flight State Changes	Ground Station
Launch	Monitor Data Reception and Integrity	Ground Station
	Prepare Recovery Operations	Recovery

Event	Description and Objectives	Team
Recovery	Track CanSat Using GPS and Audio-Visual Indicators	Recovery
	Recover Probe and Container	Recovery
	Return CanSat to the Launch Site	Recovery
	Recover SD Cards.	Recovery
♦ Data Analysis	Submit Transmitted Data and SD Cards to Judges for Scoring	Ground Station Recovery

The Mission Operations Manual (MOM) will contain the following sections:

Section Name	Description	
Ground Station Configuration	Process for setting up the ground station as well as initializing communication between the CanSat and the ground station.	
CanSat Preparation	Instructions for assembly and pre-flight operation of the CanSat.	
CanSat Integration	Instructions for Rocket-CanSat integration and verification of CanSat functionality.	
Launch Preparation	Instructions for delivery and installation of rocket on launch pad.	
Launch Procedure	Step by step guide for Mission Control Officer and standard operating procedures pertaining to rocket arming and launch.	
Development Status		
 MOM template has been downloaded from the CanSat website and development has begun. Will be filled in further as changes are encountered leading up to launch day. 		

- 2. Each team member will familiarize themselves with the MOM and appendix A of the mission guide for their and everyone else's safety at the launch site.
- 3. Each member of the team will receive a copy of the MOM with the field safety rules on launch day for reference.

Recovery Strategy	Container	Probe	
Brightly Colored	 Spray painted neon pink Parachute will be sown with neon pink fabric 	 Final parts will be printed in orange filament Parachute will be sown with neon pink fabric 	
Visible Beacon	N/A	Bright flashing LED	
Audio Beacon	N/A	100dB beeping buzzer	
GPS Position	N/A	Real Time Position within 2.5m	
Team Contact	Phone number of team lead, phone number of recovery lead, email address of team lead, and the return address labeled on the container	Phone number of team lead, phone number of recovery lead, email address of team lead, and the return address labeled on the probe in two locations	

Team Contact Info:

Louis McEvoy (951-395-4732); Mason Mills (205-520-6471); wlm0013@uah.edu; 901 John Wright Dr NW, Huntsville, AL 35805

Mission Rehearsal Activities (1 of 3)

Activity	Rehearsal Plan	Date Rehearsed
Powering On/Off the Cansat1. Insert batteries into the electronics package of the CanSat1. Insert batteries into the electronics package of the CanSat2. Power on the CanSat3. Verify power indicators are activated4. Power off the CanSat5. Verify the power indicators are no longer activated.		March 21, 2023
Radio Link Check	 Attach Yagi antenna to ground station Power on the CanSat Point Yagi antenna towards CanSat Monitor ground station for good probe connection If connection is established, send CX,ON command Monitor GCS for sent telemetry If GCS receives telemetry, radio link is established 	March 21, 2023
Launch Configuration Preparations	 Assemble probe and container and ensure all connection points and linkages are strong Pack probe parachute, spool flag raising mechanism and ensure servos are in their starting positions Integrate probe and container. Ensure the deployment system is zeroed and secure Pack container parachute and temporarily secure. 	May 6, 2023

Mission Rehearsal Activities (2 of 3)

Activity	Rehearsal Plan	Date Rehearsed
Loading CanSat into launch vehicle	 Power on probe and container Verify launch configuration of all subsystems Integrate Cansat with parachute on the coupler Spin CanSat around to ensure free movement out of the payload section 	May 6, 2023
Telemetry Processing, Archiving, and Analysis	 Turn on the CanSat and ground station Send the CX,ON command Send Simulation enable command and Activate command Send flight pressure data test packet Check ground station for graphs If graphs present, processing and analysis have occurred When FSW reaches flight state 6, turn off CanSat Remove and check SD card for archived data as CSV files 	April 8, 2023
Recovery	 Visually track CanSat while in flight At probe separation, recovery lead maintain visual with probe and co-lead maintain visual with container Once probe lands, use GPS coordinates, visual and audio indicators to locate landing site Once container lands, travel in heading of last visual to locate landing site 	May 6, 2023

Drop Test and Test Launch

- We will be conducting an "at altitude" drop test on April 8th, 2023 and a full scale test launch on May 6th, 2023 to validate launch day procedures, familiarize the team with the MOM, and test the entire CanSat assembly
- Using what we learn from the drop test and test launch, we will be able to make the necessary adjustments to our CanSat and the team's procedures so that we are as prepared as possible for competition

T-	Test Launch Description	
-2:00:00 to -0:45:00	Team arrives to the launch site and prepares the CanSat for rocket integration.	
-0:45:00 to -0:15:00	CanSat team powers on the CanSat and integrates the CanSat and rocket.	
-0:15:00 to +0:00:00	Communication is validated and MCO makes launch call. CanSat is launched.	
+0:00:00 to +1:00:00	Recovery team keep visual on the CanSat, recovers it, and analyzes the data.	

Requirements Compliance

Louis McEvoy

We comply with 60 of the 60 requirements listed in the mission guide.

Requirement #43 was omitted because it was skipped in the mission guide.

Mechanical:

All of our structural components comply with the strength, size, appearance and descent rate requirements.

Electrical:

Our PCB and electronics package collect the required information and send telemetry to the ground station.

Software:

Our FSW and GS comply with the formatting and telemetry presentation requirements.

Requirements Compliance (1 of 9)

#	Requirement	Compliance	Slide Referencing	Notes	Verification Method					
		State	Compliance		A	I	Т	D		
1	Total mass of the CanSat (science probe and container) shall be 700 grams +/- 10 grams.	Comply	79		x	x				
2	CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.	Comply	24		x			x		
3	The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.	Comply	24		x	x				
4	The container shall be a fluorescent color; pink, red or or orange.	Comply	141			x				
5	The container shall be solid and fully enclose the science probes. Small holes to allow access to turn on the science probes are allowed. The end of the container where the probe deploys may be open.	e science Comply 40			x		x			
6	The rocket airframe shall not be used to restrain any deployable parts of the CanSat.	Comply 24			x					
7	The rocket airframe shall not be used as part of the CanSat operations	Comply	Comply 24			x				

Requirements Compliance (2 of 9)

#	Requirement	Compliance	Slide Referencing	Notes	Verification Method					
		State	Compliance		Α	I	Т	D		
8	The container's parachute shall not be enclosed in the container structure. It shall be external and attached to the container so that it opens immediately when deployed from the rocket	Comply	39		x	x		x		
9	The Parachute shall be fluorescent Pink or Orange	Comply	39			x				
10	The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5 m/s.	Comply	47				x	x		
11	0 altitude reference shall be at the launch pad.	Comply	99		x		x			
12	All structures shall be built to survive 15 Gs of launch acceleration.	Comply	71		x			x		
13	All structures shall be built to survive 30 Gs of shock.	Comply	71		x			x		
14	All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high performance adhesives.	Comply	70		x	x				

Requirements Compliance (3 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method					
		State	Compliance		Α		Т	D		
15	All mechanisms shall be capable of maintaining their configuration or states under all forces.	Comply 70-71			x			x		
16	Mechanisms shall not use pyrotechnics or chemicals.	Comply	49-71			X				
17	Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting vegetation on fire.	Comply 49-71			x					
18	Both the container and probe shall be labeled with team contact information including email address.	Comply	141			x				
19	Cost of the CanSat shall be under \$1000. Ground support and analysis tools are not included in the cost. Equipment from previous years shall be included in this cost, based on current market value.Comply166		x	x						
20	XBee radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBee radios are also allowed.	Comply	86			x				
21	XBee radios shall have their NETID/PANID set to their team number.	Comply	86			x				

Requirements Compliance (4 of 9)

#	Requirement	Compliance	Slide Referencing	Notes	Verification Method					
		State	Compliance		Α		Т	D		
22	XBee radios shall not use broadcast mode	Comply 86				x				
23	The container and probe shall include an easily accessible power switch that can be accessed without disassembling the CanSat and science probes and in the stowed configuration.	Comply	61,94			x	x			
24	The probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the CanSat and in the stowed state.	Comply	62			x	x			
25	An audio beacon is required for the probe. It shall be powered after landing.	Comply	62			x	x	x		
26	The audio beacon shall have a minimum sound pressure level of 92 dB, unobstructed.	Comply	62				x			
27	Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed.	Comply	95			x				

Requirements Compliance (5 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method				
		Slale	Compliance		Α		Т	D	
28	An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.	Comply 62,70			x	x			
29	Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.	Comply	70,71,95			x			
30	The CanSat shall operate during the environmental tests laid out in Section 3.5.	Comply	122-124				x		
31	The CanSat shall operate for a minimum of two hours when integrated into the rocket.	Comply	97				x	x	
32	The probe shall be released from the container when the CanSat reaches 500 meters.	Comply	101				x	x	
33	The probe shall deploy a heat shield after leaving the container.	Comply	64,65				x	x	
34	The heat shield shall be used as an aerobrake and limit the descent rate to 20 m/s or less.	Comply	47				x	x	

Requirements Compliance (6 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method					
			Compliance		A		Т	D		
35	At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s +/- 1 m/sec.	Comply 47, 101					x	x		
36	Once landed, the probe shall upright itself.	Comply	67, 101				x	X		
37	After uprighting, the probe shall deploy a flag 500 mm above the base of the probe when the probe is in the upright position.	Comply	68,101				x	x		
38	The probe shall transmit telemetry once per second.	Comply	Comply 87,101		x	x	x			
39	The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked.	Comply	87		x		x			
40	The probe shall include a video camera pointing down to the ground.	Comply	61			x				
41	The video camera shall record the flight of the probe from release to landing.	Comply 20,96,99				x	x	x		
42	The video camera shall record video in color and with a minimum resolution of 640x480.	Comply 33,34			x	X				

Requirements Compliance (7 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method					
		State	Compliance		Α	I	Т	D		
44	The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets.	Comply 99-103				x	x			
45	The probe shall maintain mission time throughout the whole mission even with processor resets or momentary power loss.	Comply 99-103			x	x				
46	The probe shall have its time set to within one second UTC time prior to launch.	Partial	99-103			x	x			
47	The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file.	Comply	103			x	x	x		
48	In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the container altitude.	Comply	103		x		x			
49	The container flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.	Comply	103				x	x		

Requirements Compliance (8 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method					
		State	Compliance		Α	I	т	D		
50	The ground station shall command the CanSat to start calibrating the altitude to zero when the CanSat is on the launch pad prior to launch.	Comply 99-101				x				
51	The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.	Comply	113				x	x		
52	Telemetry shall include mission time with 1 second or better resolution.	Comply	30,89		x			x		
53	Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.	Comply	103		x		x	x		
54	Each team shall develop their own ground station.	Comply	112-114			x		x		
55	All telemetry shall be displayed in real time during descent on the ground station.	Comply 114				x		x		
56	All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.)	Comply	88,89			x		x		

Requirements Compliance (9 of 9)

#	Requirement	Compliance State	Slide Referencing	Notes	Verification Method					
			Compliance		Α		Т	D		
57	Teams shall plot each telemetry data field in real time during flight.	Comply 114			x		x			
58	The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBee radio, and a hand-held antenna.	Comply	106-110			x		x		
59	The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site.	Comply	106-110			x		x		
60	The ground station software shall be able to command the container to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.	Comply 103			x		x			
61	When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the CanSat.	Comply	103			x		x		

Management

Louis McEvoy

	E	lectrical Component	S	
Components	Quantity	Status	Date Ordered	Date Received
BNO055	1	Received	February 6, 2023	March 10, 2023
BMP388	2	Received	February 6, 2023	March 10, 2023
SAM-M8Q Breakout	1	Received	February 6, 2023	March 10, 2023
Teensy 4.1	1	Received	February 6, 2023	March 10, 2023
XBee Pro 900HP	1	Received	N/A	N/A
XBee Explorer Board	1	Received	February 6, 2023	March 10, 2023
Adafruit Spycamera	2	Received	N/A	N/A
XIAO SEEED	1	Received	February 6, 2023	March 10, 2023
Metal Gear Servo	5	Received	February 6, 2023	March 10, 2023
Custom PCB (V4)	2	Received	March 15, 2023	March 21, 2023
CR123A Surefire	2	Received	February 6, 2023	March 10, 2023
CR2450 Coin Cell	2	Received	February 6, 2023	March 10, 2023
CR2032 Coin Cell	1	Received	February 6, 2023	March 10, 2023

	E	lectrical Component	S	
Components	Quantity	Status	Date Ordered	Date Received
Battery Holders (Surefires and Coin Cells)	5	Received	February 6, 2023	March 10, 2023
Starboard LED	1	Received	February 6, 2023	March 10, 2023
Buzzer	1	Received	February 6, 2023	March 10, 2023
Power Switch	2	Received	February 6, 2023	March 10, 2023
SD Cards	3	Received	February 6, 2023	March 10, 2023
SMD Power Management (Capacitors,Resistors, MOSFETS, Regulators, etc.)	-	Received	February 6, 2023	March 10, 2023
	M	echanical Componen	ts	
Components	Quantity	Status	Date Ordered	Date Received
Fiberglass Shell	1	Received	N/A	N/A
Ripstop Nylon	1	Received	February 6, 2023	March 10, 2023
Zip Ties	6	Received	February 6, 2023	March 10, 2023

	Mechanical Components										
Components	Quantity	Status	Date Ordered	Date Received							
M5 Eye Nut	3	Received	N/A	N/A							
M5 40mm Threaded Rod	1	Received	February 6, 2023	March 10, 2023							
Carbon Fiber Arm	4	Received	February 6, 2023	March 10, 2023							
Carbon Fiber Structural Rod	4	Received	N/A	N/A							
M4 80mm Threaded Rod	2	Received	N/A	N/A							
Heat Shield Hinge	4	Received	N/A	N/A							
Parachute Spring	2	Received	N/A	N/A							
Tape Measure	1	Received	February 6, 2023	March 10, 2023							
M3 24mm Pin	2	Received	February 6, 2023	March 10, 2023							
PETG Filament	1	Received	February 6, 2023	March 10, 2023							

	Gro	und Station Compon	ents	
Components	Quantity	Status	Date Ordered	Date Received
Ground Station Computer	1	Received	N/A	N/A
XBee Breakout Board	1	Received	N/A	N/A
Ground Station XBee	1	Received	N/A	N/A
Yagi Antenna	1	Received	N/A	N/A
Umbrella	1	Received	N/A	N/A

*Note: For date ordered/received, N/A indicates re-used components

CanSat Budget – Hardware (1 of 6)

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
BMP388	2	10.95	21.90	Actual	
SAM-M8Q	1	42.95	42.95	Actual	
BNO055	1	34.95	34.95	Actual	
Teensy 4.1	1	31.50	31.50	Actual	
XBee Pro 900HP	1	61.23	61.23	Actual	Х
XBee Explorer Breakout Board	1	11.95	11.95	Actual	Х
New Energy LED Starboard	1	6.18	6.18	Actual	
BUZZER PIEZO 3V 30MM	1	2.78	2.78	Actual	
SPDT Switch	2	5.39	5.39	Actual	
Linear 5.0V Regulator	1	5.87	5.87	Actual	
Slide Total	-	-	224.70	-	-

CanSat Budget – Hardware (2 of 6)

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
Previous Slide Total	-	-	224.70	-	-
P-Channel MOSFET TO-220AB	3	1.64	4.92	Actual	
CR123A Battery	2	2.00	4.00	Actual	
Cr123A Battery Holder	2	1.23	2.46	Actual	
Custom PCB	2	20.00	40.00	Budgeted	
Micro Servo Metal Gear	1	14.95	14.95	Actual	Х
DC Motor in Micro Servo Body	3	3.50	13.50	Actual	Х
Wires, Solder, Resistors, Capacitors	1	30.00	30.00	Budgeted	
Seeed RP 2040	1	5.40	5.40	Actual	
CR2450 Battery	2	3.41	6.82	Actual	
CR2450 Battery Holders	2	0.60	1.20	Actual	
Slide Total	-	-	347.95	-	-

CanSat Budget – Hardware (3 of 6)

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
Previous Slide Total	-	-	347.95	-	-
Fiberglass shell	1	20	20.00	Estimate	
M5 40mm threaded rod	1	0.5	0.50	Actual	
M5 eye nuts	2	6.16	12.32	Actual	
M5 nuts	1	0.11	0.11	Estimate	
Rip Stop Nylon	420cm^2	0.001 per cm^2	0.42	Estimate	
Paracord	128.3cm	0.004 per cm	0.51	Estimate	
Petg Container Piece	20g	0.034 per gram	0.68	Estimate	
Carbon fiber arms	4	2.66	10.63	Actual	
Carbon fiber structural rods	4	2.66	10.63	Actual	
Slide Total	-	-	403.75	-	-

CanSat Budget – Hardware (4 of 6)

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
Previous Slide Total	-	-	403.75	-	-
M5 eye nut	3	6.16	18.48	Actual	
Nylon Attachment Points	4	0.034 per gram	0.14	Estimate	
M3 bolts 14mm	8	1.48	11.84	Actual	
M3 24mm pins	2	2.21	4.42	Actual	
Paracord	328 cm	0.004 per cm	1.31	Estimate	
Nose Cone	1	0.034 per gram	1.15	Estimate	
Pinch Plate	1	0.034 per gram	0.31	Estimate	
Slider Plate	1	0.034 per gram	0.41	Estimate	
Slide Total	-	-	441.51	-	-

CanSat Budget – Hardware (5 of 6)

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
Previous Slide Total	-	-	441.51	-	-
Hinge Plate	1	0.034 per gram	0.44	Estimated	
Servo Plate	1	0.034 per gram	0.68	Estimated	
Rod Shoe	2	0.034 per gram	0.07	Estimated	
Deployment Link	8	0.034 per gram	0.55	Estimated	
Heatshield Hinge	8	0.25	2.00	Estimated	
Parachute Container	1	0.034 per gram	1.23	Estimated	
Parachute Eye Nut	3	0.50	1.50	Actual	
Tape Measure	1	10.00	10.00	Actual	
Slide Total	-	-	457.98	-	-

CanSat Budget – Hardware (6 of 6)

Component	Quantity	Unit Price (\$)	Total Cost (\$)	Source	Reuse
Previous Slide Total	-	-	457.98	-	-
Parachute Piston	1	0.034 per gram	0.27	Estimated	
Parachute Spring	2	0.30	0.60	Estimated	
Parachute Pate	1	0.034 per gram	0.71	Estimated	
PCB Standoff	8	0.07	0.56	Actual	
Total	-	-	460.13	-	-

CanSat Total = \$460.13

This total is less than the \$1000 limit and therefore complies with requirement 19

CanSat Budget – Other Costs

Component	Cost (\$)	Quantity	Total Cost (\$)	Source	Reuse
Ground Station Laptop (Dell XPS 15 Laptop)	\$1,996.00	1	\$1,996.00	Actual	х
Laird Technologies PC906N Yagi Antenna	\$47.39	1	\$47.39	Actual	х
N Male to RP-SMA Male Coaxial Cable	\$11.99	1	\$11.99	Actual	х
SparkFun XBee Explorer USB	\$27.95	2	\$27.95	Actual	Х
XBee Pro 900HP	\$62.08	1	\$62.08	Actual	Х
USB Mini to USB A Cable	\$6.99	1	\$6.99	Actual	Х
Travel (Per Person)	\$116.67	10	\$1,166.67	Estimate	
Lodging (Per Person)	\$250.00	10	\$2,500.00	Estimate	
Food (Per Person)	\$166.67	10	\$1,666.67	Estimate	

Other Costs Total = \$7,485.74

Funding is Provided by the Alabama Space Grant Consortium

Total Mission Cost: \$7,945.27

General Detailed Timeline

Name	Start Date	End Date	Octo	ober	1	Nove	embe	r .	Dece	embe	P	J	anuar	Y		Febr	uary		Ma	rch		Ap	oril		May		
General			17			14	21		12							13			13		27		17		15	22	5
Team Formation	10/10/2022	10/30/2022																									
MCR Phase	10/24/2022	12/2/2022																									
PDR Phase	12/2/2022	1/27/2023																									
CDR Phase	1/27/2023	4/10/2023																									
Parts Ordering	2/6/2023	4/10/2023																									
Test-Launch Phase	4/14/2023	5/7/2023																									
Competition Phase	5/7/2023	6/11/2023																									
Important School Dates																											
Fall Finals	12/5/2022	12/12/2022																									
Winter Break	12/12/2022	1/6/2023																									
Spring Break	3/13/2023	3/17/2023																									
Spring Finals	4/22/2023	4/28/2023																									
Team Milestones																											
Initial Design	10/10/2022	2/6/2023																									
Prototyping	2/6/2023	4/1/2023																									
Testing	4/1/2023	5/1/2023																									
Cansat Finalization	5/1/2023	6/1/2023																									

At the time of CDR, we are approximately 70% complete with work for the competition.

Mechanical Detailed Timeline

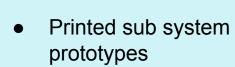
Name	Start Date	End Date	Octo	ber		N	over	mber	ĺ	Dece	mber	1	Janu	ary		Feb	oruary	/	Ma	arch		Ap	oril		May			
General			17		31		14	21		12	19			23	30	13		27	13		27		17		15	22	29	5
Team Formation	10/10/2022	10/30/2022																										
MCR Phase	10/24/2022	12/2/2022																										
PDR Phase	12/2/2022	1/27/2023																										
CDR Phase	1/27/2023	4/10/2023																										
Parts Ordering	2/6/2023	4/10/2023																										
Test-Launch Phase	4/1 <mark>4/2023</mark>	5/7/2023																										
Competition Phase	5/7/2023	6/11/2023																										
Mechanical Team																												
Initial Brainstorming	10/10/2022	11/13/2022																										
Material Trade Studies	10/24/2022	11/20/2022																										
Decent Mechanism Models	11/7/2022	12/2/2022																										
CAD Design and Completion	12/2/2022	1/31/2023																										
Prototyping	2/1/2023	4/3/2023																										
Itegration	4/3/2023	5/7/2023																										
Environmental Testing	5/8/2023	6/10/2023																										

Electrical Detailed Timeline

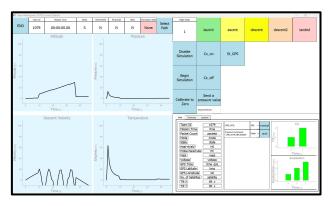
Name	Start Date	End Date	Octo	ber	N	over	mber	2	1000	Decei	mber		Ja	nuar	y		Febr	uary		Ma	irch		A	pril		May		
General			17			14	21			12							13		27	13		27		17		15	22	5
Team Formation	10/10/2022	10/30/2022																										
MCR Phase	10/24/2022	12/2/2022																										
PDR Phase	12/2/2022	1/27/2023																										
CDR Phase	1/27/2023	4/10/2023																										
Parts Ordering	2/6/2023	4/10/2023																										
Test-Launch Phase	4/14/2023	5/7/2023																										
Competition Phase	5/7/2023	6/11/2023																										
Electrical Team																												
Trade Stuides	10/10/2022	11/17/2022																										
PCB Development	11/18/2022	1/9/2023																										
Parts Order and Breadboarding	1/9/2023	2/27/2023																										
Assembly	2/27/2023	3/15/2023																										
Testing	3/15/2023	4/3/2023																										
Integration	4/3/2023	5/7/2023																										
Environmental Testing	5/7/2023	6/10/2023																										

Software Detailed Timeline

Name	Start Date	End Date	Octo	ober		Nove	mber		Dece	mber	-	J	anua	ry		Febr	uary		Ma	irch		A	oril		May		
General			17			14	21		12	19						13		27	13		27		17			22	5
Team Formation	10/10/2022	10/30/2022																									
MCR Phase	10/24/2022	12/2/2022																									
PDR Phase	12/2/2022	1/27/2023																									
CDR Phase	1/27/2023	4/10/2023																									
Parts Ordering	2/6/2023	4/10/2023																									
Test-Launch Phase	4/14/2023	5/7/2023																									
Competition Phase	5/7/2023	6/11/2023																									
Software Team																											
State Machine	10/10/2022	11/16/2022																									
Ground Station Development	11/16/2022	1/19/2023																									
Prototyping	11/16/2022	1/19/2023																									
Radio Testing	1/20/2023	2/15/2023																									
Parts Order and Sensor Testing	1/20/2023	2/27/2023																									
Debugging	2/15/2023	6/10/2023																									


- Team Afterburner will utilize vans provided by the University of Alabama in Huntsville to transport personnel, CanSat equipment, spare parts, and tools to Virginia Tech from Huntsville, Alabama.
- The drive will take approximately 7 hours
- We will not have to worry about checked bags or shipping equipment since we will be responsible for driving ourselves to the launch site.

	Electrical	Software
Accomplishments	 Working 4th generation PCB Completed electronics package assembly Completed sensor testing 	 Modularization of functions Sensor testing and integration GS updated to V2 with communication and location tracking



Mechanical

- Preliminary parachute deployment tests
- Begun electrical and software integration

Electronics Package

Ground Station GUI

Prototype Probe Assembly

	Electrical	S
In Progress and Future Tests	 Finalization of PCB and ordering Mechanical - electrical integration Software - electrical testing 	 Integration testi Simulation testi Fina GS (

 Integrated system testing

oftware

- Simulation profile testing
- Finalizing FSW and GS GUI

 Full mechanical subsystem integration

Mechanical

- Full software and electrical integration
- Flight Tests
- Environmental tests

What's Next?

Team Afterburner has completed many of the steps leading up to and including prototyping and manufacturing. We are on track with the timeline set both by the team and the competition. More vigorous and consistent testing will begin within the coming weeks, and we are eager to compete this coming June.