

CanSat 2023 Preliminary Design Review (PDR) Outline Version 1.0

#1068 METUOR SPACE

Number	Contents	Presenter	Page No.
1.	Introduction	Berkant Alperen	1
2.	Systems Overview	B. Alperen, U. Altun, M. Y. Aksu	<u>5</u>
3.	Sensor Subsystem Design	Alp Kaan Kottas	<u>31</u>
4.	Descent Control Design	Emre Okuducu	<u>40</u>
5.	Mechanical Subsystem Design	Umut Altun, Mustafa Y. Aksu	<u>60</u>
6.	CDH Subsystem Design	A.Kottas, B. Aydar, B. Kottas	<u>87</u>
7.	Electrical Power Subsystem Design	Mehmet İlbağı	<u>100</u>
8.	Flight Software Design	Burak Aydar, Baris B. Kottas	<u>106</u>
9.	Ground Control System Design	Baris Kottas, Berkant Alperen	<u>114</u>
10.	CanSat Integration and Test	Umut Altun, Semihcan Seven	<u>122</u>
11.	Mission Operations & Analysis	Semihcan Seven	<u>130</u>
12.	Requirements Compliance	Berkant Alperen	<u>136</u>
13.	Management	Berkant Alperen	<u>148</u>

GCS	Ground control system	ABS,PLA+,PTEG	3D printing materials
CNC	Computer numerically controlled	CDI	Sorial poriphoral interface
COTS	Commercial off the shelf		
GPS	Global positioning system	UARI	receiver transmitter
CONOPS	Concept of operation	ADC	Analog-to-digital
FSW	Flight software subsystem		converter
EDS	Electrical nower subsystem	DC	Direct current
		CDH	Communication and data
DCS	Descent control system		handling
		505	

CW	Clockwise
CCW	Counterclockwise

UART	receiver transmitter
ADC	Analog-to-digital converter
DC	Direct current
CDH	Communication and data handling
РСВ	Printed circuit board
RTC	Real time clock

GUI

Graphical user interface

All SI Unit system

Systems Overview

Berkant Alperen, Umut Altun, Mustafa Yusuf Aksu

Mission Objectives:

- Design a Cansat that shall consist of a container and a probe.
- The Cansat shall be launched to an altitude ranging from 670 meters to 725 meters above the launch site and deployed near apogee (peak altitude).
- The Cansat shall descend using a parachute at a rate of 15 m/s.
- At 500 meters, the Cansat shall release a probe that shall open a heat shield that will also be used as an aerobraking device with a descent rate of 20 meters/second or less.
- At 200 meters, the probe shall deploy a parachute and slow the descent rate to 5 meters/second.
- Once the probe has landed, it shall attempt to upright itself and raise a flag 500 mm above the base of the probe when the probe is in the upright position.
- A video camera shall be included and point toward the ground during descent.

Bonus Objectives (Attempted):

• A video camera shall be integrated into the container and point toward the probe. The camera shall record the event when the probe is released from the container. The video shall be recorded and retrieved when the container is retrieved.

Rationale: We have enough space for the required avionics in our container and these avionics were also light enough to not exceed our mass budget so attempting the bonus objective was rational.

System Requirement Summary (1/10)

Number	Pequirement	Priority	Priority	Subsystem	Verification				
	Requirement		Subsystem	А	Ι	Т	D		
1	Total mass of the CanSat (science probe and container) shall be 700 grams +/- 10 grams.	Very High	Mechanical / Electronics	Х					
2	CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.	Very High	Mechanical	х		х	Х		
3	The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.	Very High	Mechanical		Х	х	Х		
4	The container shall be a fluorescent color; pink, red or or orange.	Very High	Mechanical		х				
5	The container shall be solid and fully enclose the science probes. Small holes to allow access to turn on the science probes are allowed. The end of the container where the probe deploys may be open.	Very High	Mechanical		х		х		
6	The rocket airframe shall not be used to restrain any deployable parts of the CanSat.	Vey High	Mechanical		х	х	х		
7	The rocket airframe shall not be used as part of the CanSat operations.	Very High	Mechanical		х		х		
8	The container's parachute shall not be enclosed in the container structure. It shall be external and attached to the container so that it opens immediately when deployed from the rocket.	Very High	Mechanical			х	х		

System Requirement Summary (2/10)

Number	Poquiromont	Priority	Subsystem		Verifi	cation	I
Number	Requirement	Fhonity	Subsystem	А	Ι	Т	D
9	The Parachute shall be fluorescent Pink or Orange	Very High	Mechanical		Х		
10	The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5 m/s.	Very High	Mechanical	x		х	
11	0 altitude reference shall be at the launch pad.	Very High	Electronics			Х	х
12	All structures shall be built to survive 15 Gs of launch acceleration.	Very High	Mechanical	x		х	
13	All structures shall be built to survive 30 Gs of shock.	Very High	Mechanical	х		х	
14	All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high performance adhesives.	High	Mechanical			х	x
15	All mechanisms shall be capable of maintaining their configuration or states under all forces.	Very High	Mechanical			Х	х
16	Mechanisms shall not use pyrotechnics or chemicals.	High	Mechanical		Х		x

System Requirement Summary (3/10)

Number	Pequirement	Priority Subsystem	Subsystem	Verification			
Number	Requirement			А	I	Т	D
17	Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting vegetation on fire.	High	Mechanical		Х		
18	Both the container and probe shall be labeled with team contact information including email address.	Very High	All subsystem		Х		
19	Cost of the CanSat shall be under \$1000. Ground support and analysis tools are not included in the cost. Equipment from previous years shall be included in this cost, based on current market value.	Very High	All subsystem	Х			
20	XBEE radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBEE radios are also allowed.	Very High	Electronics				х
21	XBEE radios shall have their NETID/PANID set to their team number.	Very High	Electronics			х	х
22	XBEE radios shall not use broadcast mode.	High	Electronics				х
23	The container (if needed) and probe shall include an easily accessible power switch that can be accessed without disassembling the cansat and science probes and in the stowed configuration.	Very High	Mechanical / Electronics		х		

System Requirement Summary (4/10)

Number	Poquiromont	Priority Subsystem	Verification				
Number	Requirement	FIIOIILY	Subsystem	Α	I	Т	D
24	The probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the cansat and in the stowed state.	Very High	Electronics		х		x
25	An audio beacon is required for the probe. It shall be powered after landing.	Very High	Electronics		х		Х
26	The audio beacon shall have a minimum sound pressure level of 92 dB, unobstructed.	High	Electronics		х		х
27	Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed.	Very High	Electronics		х		
28	An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.	Very High	Mechanical / Electronics		х		х
29	Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.	Very High	Mechanical / Electronics		х		

System Requirement Summary (5/10)

Number	Dequirement	Driority	Subovotom		Verifi	cation	ľ
Number	Requirement	Thomy	Subsystem	А	I	Т	D
30	The Cansat shall operate during the environmental tests laid out in Section 3.5.	Very High	Mechanical / Electronics	х		х	
31	The Cansat shall operate for a minimum of two hours when integrated into the rocket.	Very High	Electronics	х		x	
32	The probe shall be released from the container when the CanSat reaches 500 meters.	Very High	Mechanical / Electronics			x	х
33	The probe shall deploy a heat shield after leaving the container.	Very High	Mechanical / Electronics			х	х
34	The heat shield shall be used as an aerobrake and limit the descent rate to 20 m/s or less.	Very High	Mechanical	х		Х	
35	At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s +/-1 m/sec.	Very High	Mechanical / Electronics			х	х

System Requirement Summary (6/10)

Number	Paguiramont	Priority Subsystem	Subayatam	,	Verifi	catio	n
Number	Requirement			А	I	Т	D
36	Once landed, the probe shall upright itself.	Very High	Mechanical / Electronics			х	х
37	After uprighting, the probe shall deploy a flag 500 mm above the base of the probe when the probe is in the upright position.	Very High	Mechanical / Electronics			х	х
38	The probe shall transmit telemetry once per second	Very High	Electronics	х		х	х
39	The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked.	Very High	Electronics / GCS			х	x
40	The probe shall include a video camera pointing down to the ground.	Very High	Mechanical / Electronics		х		
41	The video camera shall record the flight of the probe from release to landing.	Very High	Electronics	Х		х	

System Requirement Summary (7/10)

Number	Dequirement	Priority Subsystem	Subovotom	Verification					
Number	Requirement	Phoney	Gubsystem	А	I	Т	D		
42	The video camera shall record video in color and with a minimum resolution of 640x480.	Very High	Electronics			х	x		
44	The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets.	Very High	Electronics	х		х			
45	The probe shall maintain mission time throughout the whole mission even with processor resets or momentary power loss	Very High	Electronics	х		х			
46	The probe shall have its time set to within one second UTC time prior to launch.	High	Electronics		х	х			
47	The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file.	Very High	Electronics / GCS		Х	Х	x		

System Requirement Summary (8/10)

Number	Doguiromont	Driority	Subovetom	,	Verifi	catio	ก
Number	Requirement	Phonity	Subsystem	А	I	Т	D
48	In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the payload altitude.	Very High	Electronics / GCS	х		х	
49	The payload flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.	Very High	Electronics / GCS		х	х	
50	The ground station shall command the Cansat to start calibrating the altitude to zero when the Cansat is on the launch pad prior to launch.	Very High	Electronics / GCS		x	x	
51	The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.	Very High	GCS		х	х	х
52	Telemetry shall include mission time with 1 second or better resolution.	High	Electronics		х	Х	Х
53	Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.	Very High	Electronics			Х	х

System Requirement Summary (9/10)

Number	Requirement	Priority		Verification			n
Number	Requirement	Thonty	Subsystem	Α	I	Т	D
54	Each team shall develop their own ground station.	Very High	GCS		х		x
55	All telemetry shall be displayed in real time during descent on the ground station.	Very High	GCS		х		x
56	All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.)	High	GCS	x	х		
57	Teams shall plot each telemetry data field in real time during flight.	High	GCS		х	х	x
58	The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBEE radio and a hand-held antenna.	Very High	GCS	х	Х		x
59	The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site.	High	GCS				x

System Requirement Summary (10/10)

Numbor	Poquiromont	Priority	Subayatam		Verification		
Number	Requirement	Phoney	Subsystem	А	Ι	Т	D
60	The ground station software shall be able to command the payload to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.	Very High	Electronics / GCS			x	x
61	When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the cansat.	Very High	Electronics / GCS	x	x	x	

System Level CanSat Configuration Trade & Selection (1/4)

Main Features of Concept A:

- Three major operations; probe separation, aerobraking and uprighting are achieved with the use of a set of arms which are controlled by a DC motor, a threaded rod and a plate. As the plate moves up and down with motor control, the plate pulls and pushes the arms radially with the connection rods.
- A two stage servo motor mechanism is present at the top of the probe. The first stage movement of the servo motor initiates probe parachute deployment and when it moves to the second stage flag mast operation is accomplished.

Summary of CONOPS:

- 1. At 500 m, the probe leaves the container by moving the plate up and retracting arms to an inner radius. After separation, the plate moves down by some length, enabling aerobraking.
- 2. At 200 m, the servo motor mechanism initiates first stage and releases the probe parachute.
- 3. After landing, the plate moves down and the arms push the probe in upright orientation.
- 4. Finally, the servo motor mechanism initiates second stage and releases a radial spring that raises the flag mast.

System Level CanSat Configuration Trade & Selection (3/4)

Concept B:

Main Features of Concept B:

- Three major operations; probe separation, aerobraking and uprighting, are achieved with the use of a set of arms which are enabled movable by a spring and air friction, a lock mechanism controlled by a servo motor and an uprighting lever controlled by another servo, respectively.
- The servo motor unlocks the lock mechanism and releases probe before the bottom plate is pulled by air resistance and the spring.
- Another spring and servo motor are present at the top of the probe, which initiates probe parachute deployment at the requested altitude.
- After landing, the uprighting mechanism uprights the probe.

Summary of CONOPS:

- 1. At 500 m, the probe leaves the container by unlocking the lock mechanism. After separation, the bottom plate is pulled by the spring and the help of air resistance, and enables aerobraking.
- 2. At 200 m, the servo motor rotates the lock of the probe parachute deployment system, and another spring releases the probe parachute.
- 3. After landing, in order to enable uprighting the probe, the uprighting lever is activated by the servo motor of the uprighting system, and the lever pushes the probe in an upright orientation.

Selected Design: Concept A

The selected design has motorized conical heat shield that is stable due to its center of pressure being higher than its center of mass. At 500 meters, the probe is released from the container. Most of the container and payload is made of fiberglass, which is strong enough for the shock forces and sustained acceleration. We will not be using pyrotechnics or chemicals.

Pros	 Fully enclosed container Lightweight probe design Multifunctional Motors Minimal Usage of electronics Low center of mass High center of aerodynamic pressure
Cons	 Fiberglass is hard to manufacture Descent rates and motor torque
Sı	ummary: This design is far more reliable and lighter compared to our other design

drawn in millimeters

- On the left: dimensions for the container
- On the middle height dimensions for the payload
- On the right, radial dimensions for the cansat

System Concept of Operations (1/3)

• Phase 0 (Pre Launch):

- CanSat is turned on and GCS connection is established.
- CanSat is placed in the rocket at launchpad.
- Sensors are calibrated and data transmission begins.
- Phase 1 (Apogee):
 - CanSat is separated from the rocket and container parachute is deployed.
- Phase 2 (Descent):
 - CanSat starts to descend at a rate of 15 m/s.
- Phase 3 (Separation and Aerobraking):
 - At 500 meters, the probe is released from the container.
 - The container continues to descend separated from the probe.
 - The heat shield is initiated and the probe starts to descend at a rate of 20 m/s.
- Phase 4 (Probe Parachute Deployment):
 - At 200 meters, the probe deploys a parachute and slows it descent rate to 5 m/s.
- Phase 5 (Landing and Upright Operation):
 - The probe uprights itself after landing.
- Phase 6 (Flag Mast Operation):
 - The probe raises a flag 500 mm above its base.
- Phase 7 (Recovery and Data Reduction):
 - Audio beacon is turned on.
 - CanSat is recovered with the help of GPS data, audio beacon and fluorescent colors.
 - Data recovered are formatted and submitted.

Launch Vehicle Compatibility

367 mm

	Envelope	Stowed Container	Clearance
Diameter (mm)	125	121	2 (radially)
Length (mm)	400	367	33

The CanSat is designed to have no protrusions and enough clearance to sit within the vehicle payload envelope in stowed configuration to enable safe deployment from the rocket.

Sensor Subsystem Design

Alp Kaan Kottas

Sensors	Manufacturer	Functions
BMP280	Bosch Sensortec	- Measure the air pressure and temperature throughout the flight to determine altitude
STM32 Onboard ADC	STMicroelectronics	- Measure the battery voltage with a resistor voltage divider
MPU9250	Invensense	 Measure the acceleration, angular velocity, and magnetic field intensity in three mutually perpendicular axis Obtain the orientation of the probe
NEO-M8N	u-blox	 Receive the geolocation and time data provided by the satellites Track the location of the payload
3202 Mini Spy Camera	Adafruit	 Record the flight of the probe from release to landing Record the probe when it is released

Air Pressure Sensor	Resolution (mbar)	Operating Pressure Range (mbar)	Dimensions (mm)	Weight (g)	Cost (\$)
BMP280	0.0016	300-1100	2.0 x 2.5 x 0.95	Negligible	2.30
BME280	0.0018	300-1100	2.5 x 2.5 x 0.93	Negligible	4.48
MS5611	0.012	450-1100	5.0 x 3.0 x 1.0	Negligible	8.06

Air Pressure Sensor	Interface	Resolution (°C)	Operating Temperature Range (°C)	Dimensions (mm)	Weight (g)	Cost (\$)
BMP280	I2C/SPI	0.01	-40 - +85	2.0 x 2.5 x 0.95	Negligible	2.30
BME280	I2C/SPI	0.01	-40 - +85	2.5 x 2.5 x 0.93	Negligible	4.48
MS5611	I2C/SPI	0.01	-40 - +85	5.0 x 3.0 x 1.0	Negligible	8.06

Payload Battery Voltage Sensor Trade & Selection

Voltage Sensor	Interface	Resolutio n (bits)	Dimensions (mm)	Weight (g)	Cost (\$)
Onboard ADC (MCU) - Voltage Divider	Analog	12	N/A	N/A	N/A
ADS1100A	Analog	16	3.0 x 3.05 x 1.1	Negligible	3.45
MCP3221A	Analog	12	3.0 x 3.05 x 1.1	Negligible	1.93

Payload Tilt Sensor Trade & Selection

Tilt Sensor	Interface	Resolution (bits)	Dimensions (mm)	Weight	Cost (\$)
BNO055	I2C/UART	14	5.20 x 3.80 x 1.00	Negligible	14.33
MPU9250	I2C/SPI	16	3.00 x 3.00 x 1.00	Negligible	7.72
BMI270	I2C/SPI	16	3.00 x 2.50 x 0.830	Negligible	6.79

Reasons							
-	Better resolution						
-	Lower cost						
-	Experience with the sensor						

Payload GPS Sensor Trade & Selection

GPS Receiver	Interface	Horizontal Position Accuracy (m)	Maximum Update Rate (Hz)	Dimensions (mm)	Weight (g)	Antenna Support	Cost (\$)
NEO-6M	I2C/SPI/ UART	2.5	5	15.5 x 15.5 x 6.3	1.6	External Passive/Active	20.55
NEO-M8N	I2C/SPI/ UART	2.5	10	12.2 x 16 x 2.4	1.6	External Passive/Active	31.50
SAM-M8Q	I2C/SPI/ UART	2.5	18	15.5 x 15.5 x 6.3	7.5	On-Board	31.50

Camera	Interface	Resolution (pixels)	Micro SD Support	Dimensions (mm)	Weight (g)	Cost (\$)
Adafruit 3202 Mini Spy Cam	Discrete	640x480 @ 30 fps	32 GB	28.5 x 17 x 4.2 + 6.2 x 6.2 x 4.4	2.8	12.5
OV7670	SCCB/I2C	640x480 @ 30 fps	N/A	~35 x ~34 x ~25	~15	5.37

Bonus Camera Trade & Selection

Camera	Interface	Resolution (pixels)	Micro SD Support	Dimensions (mm)	Weight (g)	Cost (\$)
Adafruit 3202 Mini Spy Cam	Discrete	640x480 @ 30 fps	32 GB	28.5 x 17 x 4.2 + 6.2 x 6.2 x 4.4	2.8	12.5
OV7670	SCCB/I2C	640x480 @ 30 fps	N/A	~35 x ~34 x ~25	~15	5.37

Selected Camera

Reasons

_	Fnoi	Jah	reso	lution

- Weight advantage
- No need to program, ready to use out of the box

Note: We are planning to use an IR/Phototransistor system to communicate probe and container to trigger the camera at the beginning of Phase 3. We will use a CR2032 to power-up bonus camera.

Descent Control Design

Muhammet Emre OKUDUCU

Descent Control Overview

Container separates from the rocket at 670-725 m. The container will descent 15 m/s (±5 m/s) using first parachute.

At 500 meters, the probe is released from the container. The container continues to descend separated from the probe. The heat shield is initiated and the probe starts to descend at a rate of 20 m/s.

At 200 meters, the probe deploys a parachute and slows it descent rate to 5 m/s.

Container Parachute

- Ripstop Nylon parachute.
- Round with 28 cm diameter and spill hole of 3 cm diameter.

• Attached to CanSat, sits passively at the top, deployed on release.

Heat shield

- Ripstop Nylon
- Conic in shape with the base diameter of 50 cm
- Attached close to the tip of the arms and the baseplate of the cansat using tie points and adhesives

Payload Parachute

- Ripstop Nylon parachute.
- Round with 71 cm diameter and spill hole of 8 cm diameter.

• Attached to probe,held by the cover attached to the servo

Container Descent Control Strategy Selection and Trade(1/2)

Design 1

- The parachute will be folded and attached to the container by its eight strings passing through the holes on top of the container.
- These strings will be knotted by use of a Figure-eight loop (Flemish loop) inside the container.
- The parachute bay will restrict the parachute from getting stuck between the container and the rocket payload envelope.

Design 2

- The parachute will be folded and attached to the container by eyebolt.
- By using an eyebolt, a stronger structure can be established. In addition, eyebolt will create excessive weight.

Selected Design	Rationale
Design 1	Parachute does not generate a large force on the container, so a strong structure is not necessary. Design 1 was preferred due to its lighter weight.

Container Descent Control Strategy Selection and Trade(2/2)

After the container separates from the rocket at apogee, its parachute is released. In this way, it falls at a speed of 15 m/s up to 500 meters. At 500 meters, the container separates from the probe and begins to fall on its own, descending to the ground at approximately 8 m/s.

Container Parachute Design

Made of Nylon

Design of parachute is Hemispherical

Parachute diameter is 31cm.

Spill hole diameter is 34mm.

Payload Aerobraking Descent Control Strategy Selection and Trade(1/3)

Design A: Motor Actuated Heat Shield/Aerobraking System

This design uses a DC motor to drive a moving plate up and down to actuate arms that are connected to a moving plate. This moving plate moves to a predetermined height and actively keeps the distance from the center. Arms form a conical aerobraking system formed by a ripstop nylon fabric.

Stability of the aerobraking system is controlled passively, the center of aerodynamic pressure sits higher than the center of mass of the probe, giving it a natural stability. this stability increases with the difference between the two centers giving us the ability to actively change the center of aerodynamic pressure.

Payload Aerobraking Descent Control Strategy Selection and Trade(2/3)

Design B: Spring-Actuated Heat Shield/Aerobraking System

This design uses a spring to drive a moving plate up to actuate arms that are connected to a stable plate. This moving plate moves to a predetermined height and actively keeps the distance from the centre. Arms form a conical aerobraking system formed by ripstop nylon fabric.

The stability of the aerobraking system is controlled by two reaction wheels, the rotational moment of those wheels creates resistance to the change in stability.

Payload Aerobraking Descent Control Strategy Selection and Trade(3/3)

Aerobraking Descent Design Trade				
Concept		Concept A	Concept B	
Drawing				
Advantages		 Passively Stable. Can be used to drop lower than the target velocity. Can be used as an uprighting mechanism. 	 Actively stable Light Uses air resistance and a spring instead of a motor 	
Disadvantages		Heavy.Requires a powerful motor.	 Center of mass sits higher than center of pressure Requires motors to rotate reaction wheels Can not be used as an uprighting mechanism. 	
Selected Design	Rationale			
Concept A	Doubles as an uprighting mechanism and an active control algorithm can be implemented if needed.			

Payload Aerobraking Descent Stability Control Strategy Selection and Trade (1/3)

Design-A (Passive Stability Control)

This design uses a high torque DC motor to release the probe from the container and subsequently open the aerobraking system. The aerobraking system will open up to a preprogrammed level, the descent forces are not expected to be strong enough to close . Stability of the aerobraking system is controlled passively, the center of aerodynamic pressure sits higher than the center of mass of the probe, giving it a natural stability.

Payload Aerobraking Descent Stability Control Strategy Selection and Trade (2/3)

Design-B (Active Stability Control)

This design uses a spring to drive a moving plate up to actuate arms that are connected to a stable plate. This moving plate moves to a predetermined height and actively keeps the distance from the centre.

The stability of the aerobraking system is controlled by 2 reaction wheels, the rotational moment of those wheels creates resistance to the change in stability.

Payload Aerobraking Descent Stability Control Strategy Selection and Trade (3/3)

Aerobraking Descent Stability Control Strategy Trade			
Design	Concept A	Concept B	
Advantages	 No extra algorithms needed. Easily optimizable The design of the probe compliments the system very well 	 Unique and easy to manufacture design No extra algorithms needed. 	
Disadvantages	 Requires a high torque dc motor to extend the aerobraking system. 	 Low drag coefficient. Opening time is long. Requires extra motor Wheels are heavy 	

Selected Design	Rationale
Concept A (Passive Stability Control)	The integration and optimization process is easier compared to Concept B. The moving plate and arm design is going to be integrated into other mechanisms of the probe.

Payload Parachute Descent Control Strategy Selection and Trade(1/3)

Parachute Design Trade				
Design Feature	Hemispherical parachute	Cross parachute		
Diagram				
Advantages	 Very common. High stability with spill hole. Good for low drop altitude, high drag. 	Easy to make.Simple folding.		
Disadvantages	 Time consuming to make. 	Low drag coefficient.Opening time is long.		

Selected Parachute Design	Rationale
Hemispherical parachute	Easy to manipulate to achieve the required descend rate. Cheap and provide a high drag.

Payload Parachute Descent Control Strategy Selection and Trade(2/3)

Material	Advantages	Disadvantages
Nylon	Common material, elastic	Melts at high temperatures
Dacron	Temperature resistant	Requires chemical stability
PTFE	Low friction	Expensive, weaker
Kevlar	Very strong, does not melt or burn	Sensitive to UV, very little fiber elongation

Selected Material	Rationale
Nylon	 Higher strength and elasticity compared to other alternatives Easily accessible No need for temperature resistivity since the mission won't take too much time.

Payload Parachute Descent Control Strategy Selection and Trade(3/3)

	Constants		Variables from equations
g	Acceleration due to gravity = 9.81 m/s ²	Fd	Drag force
М	Mass of CanSat = 700g	D_1, D_2	1 st & 2nd parachute diameter
ρ	Density of air = 1.112 kg/m ³	V	Terminal velocity of CanSat
Cd1	Coefficient of drag for round parachute = 0.75	A	Area of the parachute with a spill hole(m ²)
π	3.14159	D ₃	Heat Shield diameter
Cd₂	Coefficient of drag for heat shield = 0.55		

Assumptions

- Drag is equal to weight at terminal velocity.
- There is no wind presence or other weather effects.
- When fully deployed, parachutes are fully inflated and contribute to the drag on the CanSat.
- The density of the air at 1000 m (launch location altitude + deploy altitude) is assumed to be 1.112 kg/m³.
- Drag coefficient for parachutes and heat shield is assumed to be 0.75 and 0,55 respectively.

Formulas

The Formula for drag force: $F D \frac{1}{2}C_D \rho A v^2$ Rearrange for parachute area: $A = \frac{2mg}{C_D \rho v^2}$

Formula for parachute area: $\frac{1}{4} \times \pi \times D^2$

Gravitational Force: FG = mg = FD at terminal velocity

Heat Shield Calculations

Area calculation at 15 m/s(our choice):

$$A = \frac{2mg}{\rho C_d V^2} = \frac{2 * 0.5 * 9.81}{1,112 * 0.55 * 15^2} = 0,0713$$

$$A = \frac{1}{4} \times \pi \times D^2$$

$$D_3 = \sqrt{\frac{4 * 0,0713}{3,14159}} = 0,3013 \quad = 0.30 \text{ m}$$

Heat Shield diameter chosen as **30cm** for ease of assembly

Summary

Dimensions	Container Parachute	Payload Parachute	Heat Shield
Diameter	31cm	77cm	30cm
Spill Hole Diameter	34mm	86mm	_
Shroud Line Length	35.65cm	88,55cm	_
Colour	Orange		
Shape	Hemis	pherical	Conical
Material	Nylon		
Shroud Material	Paracord		-
Number of Shrouds		8	-

Mechanical Subsystem Design

Umut Altun Mustafa Yusuf Aksu

Mechanical Subsystem Overview

Aerobraking Descent Stability Control Strategy Trade				
Design	Concept A	Concept B		
Advantages	 Easy to manufacture Impact resistant Easy to reach the power switch 	LightEasy to reach components		
Disadvantages	HeavyCamera is hard to reach	 Holes may disturb aero features 		

Selected Design	Rationale
Concept 1	Concept 1 provided a reliable separation from the rocket and reliable separation of the probe from the container. This concept also provides a larger tolerance to the changes in the design as we move to the CDR.

Container Structural Material Selection						
Material	Density (g/cm3)	Impact Strength	Tensile Strength (MPa)	Melting Temperature (C)	Manufacturin g Process	Comments
ABS	1.05	Low	45	200	3D printing	Low strength
PLA	1.24	Low	37	170-180	3D printing	Low strength
Fiberglass	2.54	High	3445	1135	Vacuum moulding	Relatively heavy
Carbon fiber	1.9	High	3000-7000	3652	Vacuum moulding	Blocks radio signals
Titanium	4.5	Very High	240	1668	CNC cutting	Too expensive Heavy Blocks radio signals

Rationale: Fiberglass was chosen for container structural material due to its incredibly high impact strength and tensile strength. It has a lower thermal stability compared to carbon fiber but provides sufficient performance. It also has a higher density compared to carbon fiber but due to it having electromagnetic shielding effect, we can not use carbon fiber.

Container Parachute Attachment Mechanism

- The parachute will be folded and attached to the container by its eight strings passing through the holes on top of the container.
- The top part of the container will be mounted onto the container using the rods and corresponding holes. Adhesives will be applied to secure the top part of the container to the main body
- These strings will be knotted by use of a Figure-eight loop (Flemish loop) inside the container.
- The parachute bay will restrict the parachute from getting stuck between the container and the rocket payload envelope.
- The parachute will be released with the CanSat when it deploys and will be opened by the drag force applied by the wind.

Concept A:

Payload Mechanical Layout of **Components Trade & Selection (1/3)**

The main driving factor for our probe design was to ensure that the center of mass was as low as possible. We also aimed to utilize all motors such that they have at least two functions in the operation of the probe.

XBee Antenna

Sensors

Motors

Payload Mechanical Layout of Components Trade & Selection (2/3)

Concept B:

Main factor for this probe design was to use springs instead of motors to ensure a light design. We also aimed for a diverse design for the aerobraking system, which was enabled by using air resistance to our advantage.

Probe Electronics:

- XBee
- Antenna
- Microcontroller
- Sensors
- Motors
- Battery etc.

Payload Mechanical Layout of Components Trade & Selection (3/3)

Selection Rationale:

- Concept 1 is lighter
- Concept 1 has a simpler design
- Concept 1 is more stable
- Concept 1 is more reliable
- Concept 1 has an easier optimization process

Payload Aerobraking Pre Deployment Configuration Trade & Selection (1/3)

Our moving plate/arms system acts as a locking mechanism which is used to secure the probe to the container. The interlocking notches of the arm and container provide a secure connection between the container and probe, which will be confirmed by testing.

At 500 meters, the probe will retract its arms and fall out of the container.

Payload Aerobraking Pre Deployment Configuration Trade & Selection (2/3)

The locking mechanism consists of two locking levers and one servo motor that controls the system to enable the prob-container bond, the levers hold onto the gaps in the container.

At 500 meters, the servo will unlock the system, the levers leave the container gaps, and the separation will occur.

Payload Aerobraking Pre Deployment Configuration Trade & Selection (3/3)

Aerobraking Pre Deployment Trade				
Concept	Concept A	Concept B		
Advantages	 Doesn't require an additional system Has a larger Locking surface Does not need to protrude out of the container 	 Actively stable Light Uses air resistance and a spring instead of a motor 		
Disadvantages	 Locking notch needs to be intricately designed and manufactured Excessive lateral forces need to be accounted for 	 Center of mass sits higher than center of pressure Requires motors to rotate reaction wheels Can not be used as an uprighting mechanism. 		

Selected Configuration	Rationale
Concept A	-Better fit for the selected aerobraking system -Does not require an extra locking system -High axial force tolerance

Payload Aerobraking Deployment Configuration Trade & Selection (1/3)

Concept A

After release, the heat arms will once again expand to the predetermined diameter of 30cm, which will slow the probe down to 15 m/s.

Expansion of the arms are facilitated by a high voltage dc motor which turns a threaded rod that moves a moving plate. The rods that connect the moving plate and the arms are always located at an angle such that torque is applicable to the arms at any configuration

These values will be confirmed by wind tunnel and flight testing.

Air resistance

- After release, the heat arms will expand to the their ideal diameter to slow the probe down to 15 m/s.
- Expansion of the arms is ensured by a spring and air resistance any motor will not be used. Pulling off the bottom plate by the spring and pushing the heatshield with air will be enabled the expansion.

Payload Aerobraking Deployment Configuration Trade & Selection (3/3)

Aerobraking Deployment Trade					
Concept	Concept A	Concept B			
Advantages	 Can also be used as an uprighting mechanism Descent speed optimization can be done much faster without the change of any parts Passively Stable 	 Light Uses air resistance and a spring instead of a motor 			
Disadvantages	 Requires a dc motor A lot of testing is needed to confirm reliable operation 	 Center of mass sits higher than center of pressure Needs an active stabilization mechanism Can not be used as an uprighting mechanism. 			

Selected Configuration	Rationale
Concept A	 Active stabilization is not something that we are very confident in Using the heat shield as an uprighting mechanism.

Payload Parachute Deployment Configuration Trade & Selection (1/3)

- Initially the servo rod locks the parachute lid in place
- When the predetermined altitude is reached the servo turns a predetermined amount to release the parachute lid
- When the parachute lid is released, the torsional spring located at the hinge of the parachute lid assists the operation.
- After the lid is open, the parachute is free to move and opens with the air resistance.

Payload Parachute Deployment Configuration Trade & Selection (2/3)

- Initially, two magnets hold the lids of the parachute deployment system.
- When the predetermined altitude is reached, the servo turns the lock of the system to release the spring.
- The spring pushes the plate to release the parachute, and separates the magnets that hold the lids together.
- After the lids are separated by the parachute, the parachute deploys.

Parachute Deployment Trade					
Concept	Concept A	Concept B			
Advantages	 Can also be used as an uprighting mechanism Descent speed optimization can be done much faster without the change of any parts Passively Stable 	 Light Uses spring and magnets instead of motors Not complex 			
Disadvantages	 Requires a dc motor A lot of testing is needed to confirm reliable operation 	 Magnets are unable to controlled A lot of testing is needed to confirm reliable operation Requires a dc motor 			

Selected Configuration	Rationale
Concept A	 Active stabilization is not something that we are very confident in Using the heat shield as an uprighting mechanism.

Payload Uprighting Configuration Trade & Selection (1/3)

- First, the probe will land on its side.
- Then, the high torque dc motor will gradually move the **arms** to the fully extended position to upright the probe.

Payload Uprighting Configuration Trade & Selection (2/3)

Presenter: Mustafa Yusuf Aksu

using its centre of mass.

Payload Uprighting Trade					
Concept	Concept A	Concept B			
Advantages	 Uses the moving plate/arms mechanism Surface variances does not affect the uprighting Can upright itself from a wide range of landing situations 	LightBasic conceptNot complex			
Disadvantages	 Requires a DC motor Requires a lot of power from the batteries Requires testing to confirm reliable operation 	 Depends on the ground shapes it must be flat Requires an additional dc motor 			

Selected Configuration	Rationale
Concept A	 We need to account for a lot of landing conditions An integrated system is easier to implement .

- Servo motor rotates to its final position and releases the flag mast.
- When the flag mast is released, a torsional spring located at its hinge raises it to full mast.

All electronics will be mounted using high performance adhesives and some standoff mechanism, we will use a PCB which will be used to integrate all of the electronics on the probe.

We only have a camera and a small PCB on the probe. They will be mounted using high performance adhesives.

Wires going up to the power switch, down to the camera and battery are going to secured using tape and zip ties.

Component Component Mass (g) Mass (g) Source Source CR2032 Button Cell PCB 28 Estimated 2.92 Measured **BMP280** 0.5 Estimated XBee Pro S3B 8 Measured MPU9250 0.5 Estimated Parachute 45 Estimated **Base Plate** 65 NEO-M8N 4 Estimated Estimated STM32F401RET6 20 1 Estimated Arms Estimated Li-Ion Battery 18500 34 Datasheet **Connecting Rods** 24 Estimated Adafruit Mini Spy Cam 2.8 Datasheet Structural Rods 45 Measured Payload Antenna 6.7 Estimated Moving Plate 10.51 Estimated 9 SG90 Servo Threaded Rod 20 **Estimated** Datasheet 0.5 Motor Plate 7.5 Estimated Flash Memory Estimated N20 DC Motor 9.5 Datasheet Flag Mast 10 Estimated

Payload Mass Budget (1/2)

Payload Mass Budget (2/2)

Component	Mass (g)	Source
Parachute Containment Bay	35.5	Estimated
Payload Parachute	45	Estimated
Aerobraking Fabric	30	Estimated
Parachute Lid	13	Estimated
Servo Arms	3	Estimated
Total	470.9	

Container Mass Budget

Component	Mass (g)	Source
Adafruit Mini Spy Cam	2.8	Datasheet
CR2032 Button Cell	2.92	Measured
Container Shell	170	Analysis
Container Structural Rods	10	Analysis
Parachute Bay	22.97	Analysis
Parachute	15	Estimated
Total	223.7	

Total Mass Budget

Component	Mass (g)
Payload	470.9
Container	223.7
Total	694.6

Communication and Data Handling (CDH) Subsystem Design

Alp Kaan Kottas, Burak Aydar

Туре	Component	Functions
Processor	STM32F401RET6	Controlling all the sensors and processing data, triggering events and communicating with the ground station.
SPI Flash Memory	Winbond W25Q32JVSSIQ	Used to store calibration and the state of the CanSat.
RTC	Internal RTC in STM32F401RET6	Keep track of real time to measure the mission time.
GCS Antenna	ZQTMAX Yagi-Uda Antenna	Increase the receiving sensitivity of the XBee
Payload Antenna	Linx Tech. ANT-916-CW-RAH-SMA	Increase the gain of the XBee transmission
Payload Radio	XBee-PRO S3B	Telemetry transmitter
GCS Radio	XBee-PRO S3B	Telemetry receiver

Payload Processor & Memory Trade & Selection (1/2)

Microcontroller	Boot time	Clock Frequency	Data Interfaces	Non-volatile Memory	Volatile Memory	Dimensions (mm)	Cost (\$)
STM32F401RE T6	85 ms	84 MHz	3 x I2C 4 x SPI 3 x USART	512 kB Flash	96 kB	10.0 x 10.0	10.84
STM32F103C8 T6	≤20 ms	72 MHz	2 x I2C 2 x SPI 3 x USART	64 kB Flash	20 kB	6.0 x 6.0	9.31
Atmega2560	2.5 s	16 MHz	1 x I2C 5 x SPI 4 x USART	256 kB Flash 4 kB EEPROM	8 kB	14.0 x 14.0	16.24

Selected Microcontroller

Reasons

- Enough data interfaces
- More volatile memory
- Cheaper than Atmega2560
- Experience with the microcontroller
- Enough number of GPIO pins

Flash Memory	Max Supported Frequency	Memory Interfaces	Memory	Write cycle time	Size	Cost (\$)
Winbond W25Q32JVSSIQ	133 MHz	SPI	32 MB	3 ms	5.30mm Width	1
Winbond W25Q128JVSI	133 MHz	SPI	128 MB	3 ms	5.30mm Width	4

RTC	Reset Tolerance	Weight (g)	Dimensions (mm)	Cost (\$)
STM32F401RET6 Built-in RTC	Unaffected due to coin battery backup	Integrated in STM32	Integrated in STM32	0
DS3231 Precision RTC Module	Unaffected due to coin battery backup	2.3	38.0 x 22.0 x 14.0	4.14
Adafruit DS1307 RTC	Unaffected due to coin battery backup	8	25.5 x 21.7 x 5	16.24

	Reasons	
-	High precision	
-	No extra space and weight	
	Since onboard	
-	huilt in	
-	Resolution is better than 1	

second

Note: A 3V lithium button cell will be connected between VBAT and VSS pins of STM32 as an external backup supply throughout the mission for the RTC.

Payload Antenna Model	Radiation Pattern	Gain (dBi)	Frequency Range (MHz)	Dimensions dia. x h (mm)	Weight (g)	Cost (\$)
Linx Tech. ANT-916-CW-RA H-SMA	Omni-Directi onal, Toroidal	2.2	850 - 970	8 x 46.5	6.7	7.87
HyperLink 900mhz Duck Antenna	Omni-Directi onal, Toroidal	3	860 - 960	33 x 60	30	20.39

Linx Tech. ANT-916-CW-RAH-SMA Radiation Pattern

Payload Antenna Trade & Selection(3/3)

Antenna location on integrated Cansat

Antenna location on landed payload

Radio Model	Radio Model Operating Frequency		Rx sensitivity
Xbee-Pro-S3B-900HP	920 MHz	250 mW (24 dBm)	-101 dBm

	XBEE Configuration
XBEE Radio Selection:	Xbee-Pro-S3B-900HP
NETID:	Will set it to be the same as our team number. (#1068)
Transmission Mode:	Unicast mode will be used instead of Broadcast mode.

Transmission Control

- After CanSat is turned on, communication will start between the ground station and the payload.
- The data transmission frequency will be **1 Hz** throughout the entire mission.
- After the flag mast operation is complete, the packet transmission will be stopped by FSW.

Data Type	Description	Data Type	Description	
TEAM_ID	assigned team number	PRESSURE	air pressure in kPa	
MISSION_TIME	time in UTC tracked by rtc	VOLTAGE	battery voltage in Volts	
PACKET_COUNT	# of transmitted packets	GPS_TIME	time given by GPS	
MODE	F for flight, S for simulation	GPS_ALTITUDE	altitude given by GPS	
STATE	operating state	GPS_LATITUDE	latitude given by GPS	
ALTITUDE	altitude relative to the launch site in meters	GPS_LONGITUDE	longitude given by GPS	
HS_DEPLOYED*	P if heat shield is deployed	GPS_SATS	# of tracked GPS satellites	
PC_DEPLOYED*	C if parachute is deployed	TILT_X	angle from the x-axis in degrees	
MAST_RAISED*	M if flag is raised	TILT_Y	angle from the y-axis in degrees	
TEMPERATURE	temperature in celsius	CMD ECHO	last command received and	
*: N otherwise			processed by FSW	

Data Format	 Each packet will be sent to the ground station as a string (array of chars) in CSV (comma-separated values) format. "TEAM_ID, MISSION_TIME, PACKET_COUNT, MODE, STATE, ALTITUDE, HS_DEPLOYED, PC_DEPLOYED, MAST_RAISED, TEMPERATURE, VOLTAGE, PRESSURE, GPS_TIME, GPS_ALTITUDE, GPS_LATITUDE, GPS_LONGITUDE, GPS_SATS, TILT_X, TILT_Y, CMD_ECHO"
Example Payload Frame with Sample Data	"1068, 13:20:22, 23, F, PRE_LAUNCH, 0.09324, N, N, N, 25, 4.2, 92, 09:20:22, 932.021, 39.891388, 32.784721, 8, 0.4023, 0.2014, CAL"

The telemetry data file will be named "Flight_1068.csv".

The presented format matches the Competition Guide Requirements.

Command Data Format Each command will be sent to GCS as a string (array of chars)					
Command Type	Command	Description			
CX - Telemetry On/Off	CXON	enables and activates telemetry			
	CXOFF	disables and deactivates telemetry			
ST - Set Time	CMD,1068,ST, <utc_time></utc_time>	sets time to the time within 1 second UTC time provided by the ground station			
	CMD,1068,ST,GPS	sets time to the time given by GPS			
SIM - Simulation Mode	CMD,1068,SIM,ENABLE	enables simulation mode			
	CMD,1068,SIM,ACTIVATE	activates simulation mode			
	CMD,1068,SIM,DISABLE	disables and deactivates simulation mode			
SIMP - Simulated Pressure Data	CMD,1068,SIMP, <pressure></pressure>	provides the flight computer with a simulated pressure reading			
CAL - Calibrate Altitude to Zero	CAL	calibrates the altitude value to zero			

The presented format matches the Competition Guide Requirements.

Electrical Power Subsystem (EPS) Design

Mehmet İlbağı

Components	Functions
Orion 18500 Li-Ion Battery 3.7V	Main power source of probe
External Power Switch	Gives ability to turn on and off main power
5 Volt DC-DC Boost Converter (based on TPS61088)	Supplies power for servos, buzzer, and 3.3 Volt LDO Regulator.
3.3 Volt LDO Voltage Regulator (LDL1117)	Supplies power for MCU, sensors, XBee radio and LEDs.
Power On LED	Power Indicator
Umbilical Power Source	Cansat power supply for tests

Payload Electrical Block Diagram

Cell	Chemistry	Voltage (V)	Capacity (mAh)	Capacity (Wh)	Size dia. x h (mm)	Weight (g)	Cost (\$)
Sony VTC6 18650	Li-Ion	3.7	3000	11.1	18 x 65	46.6	8.11
Samsung INR18650-35E	Li-lon	3.7	3500	12.95	18 x 65	50	13.45
Orion 18500/15	Li-Ion	3.7	1500	5,55	18 X 50	34	4.76

Selected Battery

Orion 18500/15 Li-Ion	129 0 11 129 1 11 19 1 19 1 19 1 19 1 19
18500/15 Li-Ion Battery	a lever units

- Less weight
- Smaller Size
- Cheaper

Note: Battery will be used at **single cell** configuration. A cable with connector will be point welded to terminals of battery. Power traces are fused at the PCB.

Components	Voltage (V)	Current (mA)	Duty Cycles (h:min:sec)	Total Power Consumption (Wh)	Source
XBee Pro S3B	3.3	215	02:00:00	1.419	Datasheet
STM32F401RET6	3.3	15.8	02:00:00	0.104	Datasheet
Adafruit Mini Spy Camera	5	110	00:05:00	0.0458	Datasheet
BMP280	3.3	0.0042	02:00:00	Neglected	Datasheet
MPU9250	3.3	3.7	02:00:00	0.0244	Datasheet
Heat Shield DC Motor	5	450	00:10:00	0.375	Datasheet
Parachute Lock Servo	5	270	00:00:05	0.0019	Datasheet
uBlox Neo-M8N	3.3	32	02:00:00	0.2112	Datasheet
Buzzer	5	80	00:30:00	0.2	Datasheet
Power Ind.LED	3.3	20	02:00:00	0.132	Estimated

Possible Operating Time	4 hour 56 minutes
Power Consumption Margin (Wh)	3.03
Total Power Consumption (Wh)	2.52
Available Total Power (Wh)	5.55

Note: We also have a CR2032 coin cell for the RTC built-in STM32F401RET6. We did not include it in this budget.

Flight Software (FSW) Design

Burak Aydar, Baris Berk Kottas

Overview of Flight Software

- The main task of the FSW is to evaluate the data coming from the sensors and to take some actions according to the stage of the cansat.
- "Kalman Filter" will be used during the evaluation of the data coming from the sensor, so that the errors in the incoming data will be minimized.
- Even if the processor is reset with the SPI Flash in the flight computer, the FSW will continue to work from where it left off.

Programming Languages

- C++ language will be used to program the processor.
- Various C libraries will be supported in sensor programming and filtering.

Development Environments

- STM32CubeIDE, STM32CubeMX and Keil are used to program the processor.
- XBee configurations will be made through the **XCTU** program.
- We use **VSCode** to build libraries and optimize our code.

FSW Tasks

PRE_LAUNCH

- CanSat is turned on with a power switch
- Sensor calibrations take place
- Establish the connection to GCS
- Send telemetry and calibration data to GCS and save to flash memory (1 Hz)

ASCENT

• Start recording the video and save the video to integrated SD module

DESCENT

• Release the probe from the container at 500 meters

AEROBRAKING

• Deploy the probe parachute at 200 meters

LANDED

- Obtain the orientation and upright the probe if needed
- Raise a flag 500 mm above
- Turn on the audio beacon (buzzer)

All states writes its phase number into the phase counter as their first job.

The following will be kept in the SPI flash:	Time	Calibration data	Phase counter

High acceleration, high temperature, static shock, excessive vibration and voltage fluctuations can cause the processor to reset.

As a precautionary measure in case of a reset, FSW will regularly perform a phase check and packet number check from the SPI Flash.

When a reset is detected, the phase is detected by the FSW, calibration is adjusted and CanSat continues from where it left off.

- The SIM commands, ENABLE and ACTIVATE, will be sent to the CanSat to activate the simulation mode.
- Once the simulation mode is activated, the pressure **sensor data will be overridden**. FSW will use the pressure data sent using the SIMP command to calculate the altitude. The pressure data will be taken from a .csv file.
- The other sensor values such as tilt, acceleration, orientation, etc. will not be affected due to the transition between flight and simulation mode. These sensor values will keep getting collected and processed by FSW no matter what.
- Using the SIM command, DISABLE, will be sent to the CanSat to switch the payload back to flight mode. FSW will thereupon resume using the pressure data collected from the sensor.

SIM - Simulation Mode Control Command (CMD,<TEAM_ID>,SIM,<MODE>) CMD,1068,SIM,ENABLE - disable the flight mode and switch to the simulation mode CMD,1068,SIM,ACTIVATE - activate the simulation mode CMD,1068,SIM,DISABLE - disable the simulation mode and switch back to the flight mode

SIMP - Simulated Pressure Data (CMD,<TEAM ID>,SIMP,<PRESSURE>)

CMD,1068,SIMP,100000 - send the given pressure data from GCS to the payload if the simulation mode is activated

• In simulation mode, the ground station will be able send pressure data at 1 Hz.

Software Development Plan

Software Development Plan

libraries for selected sensors Test each sensor separately Put together the system with all sensors

Write FSW and test algorithms

Prototyping

- The libraries of each sensor will be written in VS Code.
- After all the sensors are confirmed to be working separately, the electronic system will be put together on a breadboard to perform specific tests.
- Finally, PCB will be assembled to perform environmental tests.

Software Subsystem Development Sequence

- Github is used to work collaboratively on our flight software.
- Prepare the FSW state diagram
- Develop the necessary algorithms to accomplish the mission objectives.

FSW Development Team: Alp, Barış and Burak

Test Methodology

- FSW will be tested to confirm whether the algorithms working as intended.
- The following environmental tests will be performed on the electronic system;
 - Drop test
 - Thermal test
 - Vibration test
 - Fit Check
 - Vacuum test

Ground Control System (GCS) Design

Barış Berk Kottas, Berkant Alperen

Specifications	
Operation Time	GCS can operate for minimum 2 hours with the internal battery of the laptop.
Overheating Mitigation	We will protect the computer from sunlight with an umbrella.
Auto Update Mitigation	Windows automatic updates will be paused for 5 weeks using the settings app.

GCS Antenna Model	Туре	Gain (dBi)	Frequency Range (MHz)	Size (cm)	Cost (\$)
ZQTMAX Yagi-Uda Antenna	Yagi-Uda Antenna (with folded dipole)	13	806 - 960	50	21.16
HyperLink Wireless 900MHz	Patch Antenna	8	908-928	22 x 22	106.99

E dB 🗕 –H dB

ZQTMAX Yagi-Uda Antenna Radiation Pattern

Handheld Antenna

Selected Antenna Mounting

Handheld Antenna

Tripod Mounted

Reasons

- Easy to direct antenna to the CanSat
- Cheaper than the tripod mounted design

GCS Prototype Overview

Ground station software is developed on Microsoft Visual Studio .NET Framework using C# in order to achieve high performance throughout the mission. It is advantageous to have multi-threading software to not miss any telemetry packet while rendering multiple charts.

- **Packages used:** Two NuGet packages are used in developing the GCS software. CSVHelper for data logging and simulation and GMAP for GPS mapping.
- **Telemetry display:** Telemetry data will be displayed as simple text at the TreeView control on the left of the screen. Numeric data will be displayed on "Graphics" panel as well. GPS data will be shown in the map on the right of the screen Real data will be shown with the appropriate scientific units.
- **Plotting:** Plotting will be done in real time using the built-in Chart package of .NET Framework. Each numeric variable will have its own chart.
- .csv telemetry file creation for judges: All received data will be logged along with their names on the computer in "csv" format using the "CSVHelper" package.
- **Calibration command and verification:** Calibration command will be sent to CanSat using the serial communication panel at the bottom of the screen. All commands will be added to autocomplete library. Verification will be done by checking the data being received from the logs (saved as .csv files) after the command has been sent.
- **Telemetry data recording and media presentation to judges:** Data log files will be transferred to judges via a USB drive after the launch operations.
- **Simulation mode:** Simulation file will be selected from the simulation tools panel under the GPS. A timer will be started with a given time interval and will be passing related data to the "data_received" function which handles the data. To activate the simulation mode, the serial communication control will be used to send commands to the CanSat.

CanSat Integration and Test

Umut Altun, Semihcan Seven

We will use the following workflow for integration and testing

Sensor Tests	Test Method
GPS Sensor test	The data from the GPS Sensor will be compared and tested with Google maps.
Payload Rotation Sensor test	Orientation of payload will be checked with respect to the Earth magnetic field
Battery Voltage Sensor test	Measure and compare battery with Voltmeter
Air Pressure Sensor test	Measuring altitude location comparing known altitudes
Air Temperature Sensor test	Compare measured temperature with thermometer
CHD Tests	Test Method
Telemetry format test	Use the same XCTU setup, test telemetry data format with some message sent between the two Xbees, verification of received data.
Simple transmit test	Telemetry transmission will be tested up to 1 km range for determining antenna range which will provide the distance like field competition.
Range test	Cansat will be taken to a location where two antennas

are around 1.5 km away.

EPS Test	Test Method
Voltage Regulation Test	Main power line will be checked if when required the current flows on it is steady or not.
Components' power supply test	All components will be checked separately whether they are powered properly or not.
Battery high current test	When power consumption is high, battery will be checked if it withstands the high current.
Battery discharge time test	Battery will be tested if it can supply current at max power consumption.
Voltage regulators	Proper and desired voltage on all power lines under load
Descent Control Test	Test Method
Velocity test	Descent velocity will be tested by dropping CanSat from a high building.
Payload parachute test	Payload parachute will be tested with a dummy weight.
Change between flight states	States changes will be tested with simulating transition conditions.

Subsystem Level Testing Plan Mechanical (3/3)

Mechanical Tests	Test Method
Servo Operation Test	Servo will be operated after being installed on the probe to ensure it can reliably release the parachute lid and flag mast.
DC Motor Operation Test	 DC motor will be tested throughout its full range of motion Probe release test Heat shield extension test Uprighting test

Descent Control Tests	Test Method
Container Parachute Deployment Test	Container will be released from a high building to confirm descent rate calculations
Parachute Testing	Independent parachutes will be tested to ensure that they match the calculated drag forces.

Integrated Level Functional Test Plan

Subsystem	Test
Descent Testing	A drone will be used to raise the cansat to an altitude of 700 meters and released.
Descent resting	The probe will deploy its aerobrake and parachute at the predetermined altitudes
Communications	Communication between the sensors and components on the PCB will be tested to check any possible failure such as short circuit, malfunctioning of any sensors.
	Consistency and quality of the data flow will be checked.
Machaniama	The uprighting mechanism will be tested on different types and slopes and surfaces.
Mechanisms	Flag mast mechanism operation will be tested while stationary on the ground.
Doploymont	That each deployment subsystem works according to our expectations will be tested.
Deployment	The probe and container (in stowed configuration) will be held upright and arms will be retracted, probe will be caught by hand.

Subsystem	Test
Drop Test	CanSat will be tied up to an eyebolt fixed high-up from the ground using a 61 cm non-stretching cord. CanSat will be raised to same level as the eyebolt and then it will be released to generate 30 g's of shock on the system. It will be verified that all systems work without any problems during the test.
Thermal Test	CanSat will be put in a thermal insulator and turned on. The air temperature will be increased by use of a heat gun. After the temperature reaches 55-60C every part and subsystem of the CanSat will be observed for two hours to ensure they work properly.
Vibration Test	CanSat will be put on a sander and turned on. The sander will be operated at full speed for 5 seconds. During this time it will be observed whether the CanSat shows any disfunction or error in collecting data and whether there are damages on the CanSat. This will be repeated 4 times.
Fit Check	All moving parts will be checked independently to ensure that they move freely. Parts will also be checked if they are connected strong enough.
Vacuum Test	CanSat will be put in a vacuum chamber and turned on. Vacuum chamber will start pulling vacuum and stop when the vacuum represents the peak altitude. The air will be allowed to enter the chamber slowly. The collected data will be monitored during the process.

The ground station will provide simulated pressure data readings to test if the FSW and the mechanical subsystems work properly. When testing, we will check if each transition condition is satisfied successfully.

The simulated pressure data readings will represent a real flight.

Implementation	We will have an if condition such that when the simulation mode is enabled, the sensor data will be overwritten by the data provided by the ground station.
Pseudocode	if SIM_ENABLED: getStationData() else: getSensorData()

Mission Operations & Analysis

Semihcan Seven

Arrival	Pre-Launch	Launch
 Arrive at the launch site Check if the CanSat is physically and functionally okay. Check if the GCS is functioning properly. 	 Moving the ground control station to dedicated location. Electrical components will be tested. Loading the payload Assembly will be completed. The ground station crew calibrates the altitude to 0 	 CanSat will be stowed. Executing launch order.
Toam Momboro	Teem Membero	Teem Members
	ream members	ream wembers

Free fall	Recovery	Analysis
 CanSat is released and starts descenting. The ground station team verifies that everything is going smoothly. 	 Container and probe will land with parachute. Heading out to recover the probe. Recovery of the probe 	 State of the payload and container checked. Received telemetry data will be analyzed.
Team Members	Team Members	
		leam Members

Antenna construction and ground system setup

- An umbrella will be used to protect GCS from sunlight and rain.
- Ground station will be set up and made working.
- Hand-held antenna will be placed properly after connecting to the workspace and the computer.
- Connection between GCS and CanSat will be controlled.

Mission Operations Manual Development Plan

Ground Station Configuration

- Set up computer, XBee, antenna, etc.
- Check whether the baud rate is selected as 19200 on GCS software
- Ensure the communication is established with probe
- Check the state of CanSat and calibration data

Launch Preparation

This plan is already available on a document published by CanSat competition

CanSat Preparation

- Make sure the battery is fully charged
- Turn on the power switch of electronics
- Monitor the sensor data on GCS software
- Perform mechanical parts to confirm the descent control is working properly

CanSat Integration

- Attach container parachute to CanSat
- Lock the payload to the container
- Mount CanSat into the rocket

Launch Procedure

This plan is already available on a document published by CanSat competition

CanSat recovery strategy:

- Both the container and the probe will have a fluorescent pink color and it will also have an attached parachute with a fluorescent orange color so it can be easily spotted from a distance.
- The whereabouts of the container will be determined by observing the flight path and the latest relevant GPS data.
- The probe will have an easier recovery since it will be transmitting GPS data throughout the mission.
- The sound of the audio beacon will also be an important factor in locating the probe.
- Both the container and the probe will have a label placed on them with the university, team name, team number, contact email information on them. Example:

Middle East Technical University, METUOR Space Team (#1068), <u>metuor.uzay@gmail.com</u>

Requirements Compliance

Berkant Alperen

We have prepared and designed CanSat by analyzing and identifying the CanSat Mission Guide 2023 . System tests will be done in accordance to CanSat Integration and Test section.

- We comply with 56 requirements based on CanSat Mission Guide 2023.
- There are 5 partial complied requirements that will need more testing. We will build some test satellites to test our concepts.
- There aren't any requirements that we do not comply with.

Rqmt Num	Requirement	Comply / No Comply / Partial	X-Ref Slide(s) Demonstrating Compliance	Team Comments or Notes
1	Total mass of the CanSat (science probe and container) shall be 700 grams +/- 10 grams.	Comply	86	We are within mass constraints.
2	CanSat shall fit in a cylindrical envelope of 125 mm diameter x 400 mm length. Tolerances are to be included to facilitate container deployment from the rocket fairing.	Comply	30	
3	The container shall not have any sharp edges to cause it to get stuck in the rocket payload section which is made of cardboard.	Comply	30	
4	The container shall be a fluorescent color; pink, red or orange.	Comply	135	
5	The container shall be solid and fully enclose the science probes. Small holes to allow access to turn on the science probes are allowed. The end of the container where the probe deploys may be open.	Comply	22	
6	The rocket airframe shall not be used to restrain any deployable parts of the CanSat.	Comply	30	
7	The rocket airframe shall not be used as part of the CanSat operations.	Comply	30	
8	The container's parachute shall not be enclosed in the container structure. It shall be external and attached to the container so that it opens immediately when deployed from the rocket.	Comply	22, 42	

Rqmt Num	Requirement	Comply / No Comply / Partial	X-Ref Slide(s) Demonstrating Compliance	Team Comments or Notes
9	The Parachute shall be fluorescent Pink or Orange	Comply	135	
10	The descent rate of the CanSat (container and science probe) shall be 15 meters/second +/- 5 m/s.	Comply	29, 58, 59	
11	0 altitude reference shall be at the launch pad.	Comply	98	
12	All structures shall be built to survive 15 Gs of launch acceleration.	Comply		To be tested
13	All structures shall be built to survive 30 Gs of shock.			To be tested
14	All electronics and mechanical components shall be hard mounted using proper mounts such as standoffs, screws, or high performance adhesives.	Comply	82	
15	All mechanisms shall be capable of maintaining their configuration or states under all forces.	Comply		To be tested
16	Mechanisms shall not use pyrotechnics or chemicals.	Comply	21	

Requirements Compliance (3/10)

Rqmt Num	Requirement	Comply / No Comply / Partial	X-Ref Slide(s) Demonstrating Compliance	Team Comments or Notes
17	Mechanisms that use heat (e.g., nichrome wire) shall not be exposed to the outside environment to reduce potential risk of setting vegetation on fire.	Comply	-	our cansat does not have such systems
18	Both the container and probe shall be labeled with team contact information including email address.	Comply	135	
19	Cost of the CanSat shall be under \$1000. Ground support and analysis tools are not included in the cost. Equipment from previous years shall be included in this cost, based on current market value.	Comply	152	
20	XBEE radios shall be used for telemetry. 2.4 GHz Series radios are allowed. 900 MHz XBEE radios are also allowed.	Comply	95	
21	XBEE radios shall have their NETID/PANID set to their team number.	Comply	95	
22	XBEE radios shall not use broadcast mode.	Comply	95	
23	The container (if needed) and probe shall include an easily accessible power switch that can be accessed without disassembling the cansat and science probes and in the stowed configuration.	Comply	22, 24	

Requirements Compliance (4/10)

Rqmt Num	Requirement	Comply / No Comply / Partial	X-Ref Slide(s) Demonstrating Compliance	Team Comments or Notes
24	The probe shall include a power indicator such as an LED or sound generating device that can be easily seen or heard without disassembling the cansat and in the stowed state.	Comply	102	
25	An audio beacon is required for the probe. It shall be powered after landing.	Comply	108	
26	The audio beacon shall have a minimum sound pressure level of 92 dB, unobstructed.			TBD, not easily reachable
27	Battery source may be alkaline, Ni-Cad, Ni-MH or Lithium. Lithium polymer batteries are not allowed. Lithium cells must be manufactured with a metal package similar to 18650 cells. Coin cells are allowed.	Comply	103	
28	An easily accessible battery compartment shall be included allowing batteries to be installed or removed in less than a minute and not require a total disassembly of the CanSat.	Comply	23	
29	Spring contacts shall not be used for making electrical connections to batteries. Shock forces can cause momentary disconnects.	Comply	103	

Rqmt Num	Requirement	Comply / No Comply / Partial	X-Ref Slide(s) Demonstratin g Compliance	Team Comments or Notes
30	The Cansat shall operate during the environmental tests laid out in Section 3.5.	Comply		To be tested
31	The Cansat shall operate for a minimum of two hours when integrated into the rocket.	Comply	105	
32	The probe shall be released from the container when the CanSat reaches 500 meters.	Comply	29, 52	
33	The probe shall deploy a heat shield after leaving the container.	Comply	29, 41	
34	The heat shield shall be used as an aerobrake and limit the descent rate to 20 m/s or less.	Comply	41, 57, 58	
35	At 200 meters, the probe shall release a parachute to reduce the descent rate to 5 m/s +/-1 m/sec.	Comply	29, 55, 56, 58	

Rqmt Num	Requirement	Comply / No Comply / Partial	X-Ref Slide(s) Demonstrating Compliance	Team Comments or Notes
36	Once landed, the probe shall upright itself.	Comply	29, 78	
37	After uprighting, the probe shall deploy a flag 500 mm above the base of the probe when the probe is in the upright position.	Comply	29, 81	
38	The probe shall transmit telemetry once per second.	Comply	108,110	
39	The probe telemetry shall include altitude, air pressure, temperature, battery voltage, probe tilt angles, command echo, and GPS coordinates that include latitude, longitude, altitude and number of satellites tracked.	Comply	96, 97	
40	The probe shall include a video camera pointing down to the ground.	Comply	23	
41	The video camera shall record the flight of the probe from release to landing.	Comply	32	

Rqmt Num	Requirement	Comply / No Comply / Partial	X-Ref Slide(s) Demonstrating Compliance	Team Comments or Notes
42	The video camera shall record video in color and with a minimum resolution of 640x480.	Comply	38	
44	The flight software shall maintain a count of packets transmitted which shall increment with each packet transmission throughout the mission. The value shall be maintained through processor resets.	Comply	96, 97	
45	The probe shall maintain mission time throughout the whole mission even with processor resets or momentary power loss	Comply	111	
46	The probe shall have its time set to within one second UTC time prior to launch.	Comply	98	
47	The probe flight software shall support simulated flight mode where the ground station sends air pressure values at a one second interval using a provided flight profile csv file.	Comply	112, 129	

Rqmt Num	Requirement	Comply / No Comply / Partial	X-Ref Slide(s) Demonstrating Compliance	Team Comments or Notes
48	In simulation mode, the flight software shall use the radio uplink pressure values in place of the pressure sensor for determining the payload altitude.	Comply	112, 129	
49	The payload flight software shall only enter simulation mode after it receives the SIMULATION ENABLE and SIMULATION ACTIVATE commands.	Comply	98, 112	
50	The ground station shall command the Cansat to start calibrating the altitude to zero when the Cansat is on the launch pad prior to launch.	Comply	98, 131	
51	The ground station shall generate csv files of all sensor data as specified in the Telemetry Requirements section.	Comply	121	
52	Telemetry shall include mission time with 1 second or better resolution.	Comply	91	
53	Configuration states such as zero altitude calibration shall be maintained in the event of a processor reset during launch and mission.	Comply	111	

Rqmt Num	Requirement	Comply / No Comply / Partial	X-Ref Slide(s) Demonstrating Compliance	Team Comments or Notes
54	Each team shall develop their own ground station.	Comply	120	We developed our own ground station.
55	All telemetry shall be displayed in real time during descent on the ground station.	Comply	121	
56	All telemetry shall be displayed in engineering units (meters, meters/sec, Celsius, etc.)	Comply	121	All the units are in engineering units.
57	Teams shall plot each telemetry data field in real time during flight.	Comply	121	
58	The ground station shall include one laptop computer with a minimum of two hours of battery operation, XBEE radio and a hand-held antenna.	Comply	115, 116	
59	The ground station must be portable so the team can be positioned at the ground station operation site along the flight line. AC power will not be available at the ground station operation site.	Comply	115	Our ground station is portable.

Rqmt Num	Requirement	Comply / No Comply / Partial	X-Ref Slide(s) Demonstrating Compliance	Team Comments or Notes
60	The ground station software shall be able to command the payload to operate in simulation mode by sending two commands, SIMULATION ENABLE and SIMULATION ACTIVATE.	Comply	121	
61	When in simulation mode, the ground station shall transmit pressure data from a csv file provided by the competition at a 1 Hz interval to the cansat.	Comply	121	

Management

Berkant Alperen

Electronics					
Component	Description	Quantity	Total Cost (\$)	Actual / Estimate	
XBee Pro S3B	Communication Module	2	110	Actual	
STM32F401RET6	Microprocessor	1	9.97	Actual	
Adafruit Mini Spy Camera	Payload/Bonus Cam	2	25	Actual	
BMP280	Barometric Pr. Sensor	1	2.30	Actual	
MPU9250	Inertia Mea. Sensor	1	11.21	Actual	
Micro DC Motor	Heat Shield DC Motor	1	5.00	Actual	
SG90 Servo	Parachute Lock Servo	1	3.50	Actual	
uBlox NEO-M8N	GPS	1	34.23	Actual	
92 dB Buzzer	Buzzer	1	4.00	Estimate	
LED	Power Indicator LED	1	0.50	Estimate	

Electronics					
Component	Description	Quantity	Total Cost (\$)	Actual / Estimate	
Printed Circuit Board	Board of Flight Computer	1	12	Estimate	
CR2032 Battery	For RTC and Bonus Camera	2	2.5	Actual	
W25Q32JVSSIQ	Winbond SPI Flash	1	1	Actual	
Other Passive Components	Including resistor, capacitors, crystals etc.	-	30	Estimate	
Mechanical					
Fiberglass	Material of container, probe base plat, arms, moving plate, motor plate, flag mast	1 <i>m</i> ²	100	Estimate	
Parachutes	Descent	2	13	Estimate	
Fiberglass Rod	Connecting Rods, Structural Rods	3m	40	Actual	

Ground Control Station Costs					
Component	Description	Quantity	Cost (\$)	Actual / Estimate	
Xbee Pro S3B	Comms. module	1	55	Actual	
ZQTMAX Yagi-Uda Antenna	GCS Antenna	1	21.16	Actual	
Xbee to USB adapter	Adapter	1	7	Estimate	
Umbrella	For sun protection	1	20	Estimate	

Other Costs						
Component	Description	Quantity	Cost (\$)	Actual / Estimate		
Prototyping	3D filaments etc.	-	50	Estimate		
Travel	Flight to the USA	10	1000*10=10000	Estimate		
Rental	Accomodation	-	4000	Estimate		
Visa fees		10	170*10=1700	Actual		
Registration fee		1	200	Actual		

Income			
Source Amount (\$)			
Sponsors	250		
Society support	250		

Total costs				
Name	Amount (\$)			
Hardware	404.21			
GCS costs	103.16			
Other costs	15950			
TOTAL	16.457,37			

Ramadan Holiday

We arranged our schedule so that we would not have a heavy workload during finals and we used the time after finals and the semester break as an opportunity to further work on this project.

Electronics

cansat2023 . 喜 Instagantt W40 Oct 22 Nov 22 Dec 22 Jan 23 W/4 Feb 23 /8 W/9 W1 Mar 23 W13 W14 Apr 23 W17 W18 May 23 21 W22 W23 Jun 23 ACTIVITIES ASSIGNEE 96 Oct 03 Oct 10 Oct 17 Oct 24 Oct 31 Nov 07 Nov 14 Nov 21 Nov 28 Dec 05 Dec 12 Dec 19 Dec 26 Jan 02 (Jan 09 Jan 16 Jjn 23 Jan 30 Feb 06 Feb 15) Feb 20 Feb 27 Mar 06 Mar 13 Mar 20 Mar 27 Apr 03 Apr 10 Apr (17 Apr 24 May 01 May 08 May 15 May 22 May 29 Jun 05 Jun 12 Jun 19 Jun 26 Jul 03 Electronics 72% Electronics: Validation of mission requirements MI, BA, AK, BK, SS Validation of mission requirements AK, BK, BA, Mİ, SS 100% Component selection Communication AK, BK, BA, Mİ 100% ommunication Communication module selection 2 Link budget Alp Kottas Link budget Mİ, AK Antenna choice Coding comms. module BK, BA Coding comms. module Acquisition of components Acquisition of components Software AK, BK, BA, SS 73% Software Creating sensor libraries Coding sensors Coding sensors Kalman filter application Burak Aydar 70% Kalman filter application Generating code assembly AK, BA 50% Generating code assembly 88% PCB production Mİ, AK PCB production Mehmetilbag Circuit design Power consumption calculations MÎ, AK Boost converter design Boost converter design Battery selection AK, Mİ Battery selection Mehmet İlbağı PCB Assembly 096 PCB Assembly Tests AK, BK, BA, MI, SS 0% Tests Long rage communication test AK. BK. BA 056 Long rage communication test GCS communication test AK, BK, BA, BA 0% GCS communication test Algorithm test BA, AK 0% Algorithm test PCB functionality test MI, BA, AK, BK, SS 0% CB functionality test Production and delivery of PCB Production and delivery of PCB MI. BA 096 26 🕢 Optimization and Development AK, BK, BA, MÍ, SS 0% Optimization and Development **Final Exams** Semester Break Ramadan Holiday

Mechanical

cansat2023

🚍 Instagantt w4 w5 / Feb 23 8 w9 w1 Mar 23 Jan 23 W13 W14 Apr 23 W17 W18 May 23 21 W22 W25 Jun 23 W45 Oct 22 W43 W44 1 Nov 22 17 W48 W49 Dec 22 W52 W1 W26 W21 ACTIVITIES ASSIGNEE EH START DUE 96 Oct 03 Oct 10 Oct 17 Oct 24 Oct 31 Nov 07 Nov 14 Nov 21 Nov 28 Dec 05 Dec 12 Dec 12 Dec 19 Janc 6 Jan 13 Jan 16 Jan 23 Jan 26 Jan 66 Feb 13 Feb 20 Feb 27 Mar 06 Mar 13 Mar 20 Mar 27 Apr 03 Apr 10 Apr (17 Apr 24 May 01 May 08 May 15 May 22 May 29 Jan 05 Jan 12 Jan 19 Jan 26 Jal 03 J 45% Mechanical: 03/Oct 24/May Mechanical: Validation of mission requirements Preliminary Design - Concept 1 Preliminary Design - Conce. Heat shield design Heat shield design Probe structural design Probe structural design Probe ejection design Probe ejection design 📀 Container design Container design Flag mission design Flag mission design Preliminary Design - Conce... Preliminary Design - Concept 2 Parachute design MY.UA **Revision and Remodeling** Tradeofis and Conclusive Preliminary Design PDR report preparation 18 🕑 096 Prototyping MY.UA 31/an 20/Feb Prototyping Manufacturing UA, MY 31/Jan 31/Mar 0% Manufacturing Aqcuiring structural ele... UA, MY 31/jan 28/Feb 096 Aqcuiring structural elements 20 Composite manufacturi... UA, MY 17/Feb 12/Mar 0% Composite manufacturing of parts Assembly UA, MY 13/Mar 0% 24/Mar Assembly Integration Whole team 24/Mar 31/Mar 096 23 Integration 24 🕑 CDR report preparation 096 MY.UA 20/Feb 31/Mar CDR report preparation Performance calculation an.. UA MY 14/Mar 0% Performance calculation and optimization Strength analysis Mustafa Y. Aksi 21/Feb 28/Feb 09 Strength analysis Topological analysis Mustafa Y. Aksi 21/Feb 13/Mar 0% Topological analysis 01/Mar Computational fluid dyn... Umut Altun 14/Mar 0% Computational fluid dynamics 29 \odot Design Improvement and C... MY, UA 28/Feb 16/Mar 096 Design Improvement and Changes Tests 0% Whole team 10/Apr 07/May Tests Drop test Orop test Whole team 10/Apr 10/Apr 0% Shock test 13/Apr 13/Apr 0% Shock test Thermal test Whole team 25/Apr 09 Thermal test 25/Apr Vibration test 07/May Whole team 07/May 0% Vibration test 35 🕢 Environmental Test Docum... Whole team 10/Apr 24/May 09 Environmental Test Document preparatie **Final Exams** Semester Break Ramadan Holiday

Ground Control System

cansat2023

Read-only view, generated on 31 Jan 2023

Major Accomplished Works:

- The team has been formed and tasks were given to individuals according to competition schedule.
- PDR is completed.
- Two different preliminary design concepts are done.
- Descent calculations and parachute design are done.
- Final preliminary design is determined after revisions and remodeling and is ready for manufacturing.
- Code libraries for all sensors are created and tested. Communication module is coded and tested.
- PCB is designed and ready to produce.

Major Unfinished Works:

- The team still needs sponsors for travel costs.
- Applying Kalman filter to the algorithm a bit late on schedule.

Why are we ready to proceed to next state to development?

• We are satisfied with our design and we are aiming to start the manufacturing process for our first prototype in the upcoming weeks. Some operations need real life testing to confirm reliable operation and we are positive that we are able to overcome any challenges which may arise.